Effect of Different Implant Length on Stress Distribution Around Dental Implants.

Dr. Shruti Anand PG Student, Kothiwal Dental College and Research Centre, Moradabad

Dr. Samarth Kumar Agarwal Professor, Department of Prosthodontics and Crown and Bridge, Kothiwal Dental College and Research Centre, Moradabad.

Dr. Swatantra Agarwal Principal and Head of Department, Department of Prosthodontics and Crown and Bridge, Kothiwal Dental College and Research Centre, Moradabad

ABSTRACT

The purpose of this study was to evaluate the stresses distribution pattern at the implant bone and implant abutment interface with varying implant length. A 3-D edentulous maxillary model was generated from computed tomography (CT) images. Four implants were placed in the premaxilla and splinted with a titanium bar. Three different configurations were evaluated with the distal implant varying in length (8 mm, 10 mm and 13 mm). A vertical load (120 N) was applied on the titanium bar corresponding to the left second premolar region. Von Mises stress values were evaluated. The results showed that stresses at the periimplant bone as well as at the implant abutment junction decreased on both the sides as the implant length increased. The surface area contact between the bone and implant increases leading to the implant absorbing more of the load and thereby decreasing the stresses.

INTRODUCTION:

Development of an ideal substitute for missing teeth has been a major aim of dental practitioners for millennia. Endosseous dental implants are currently used to retain and/or support prostheses for restoring completely or partially edentulous patients, for a variety of tooth loss scenarios. Osteointegration is the mechanism by which an implant is biomechanically accepted by the jawbone. Primary stability is also important, as the bone is still in a state of repair and necessitates applied stresses that promote bone growth. The interface must tolerate the occlusal forces without adverse tissue response. In natural teeth, the periodontal ligament acts as an intermediate cushion element to buffer the occlusal forces; however, in the osseointegrated dental implant, ossealus loads are transmitted directly to the surrounding bones. This could cause microfracture at the interface between the bone and implant, fracture of implant, loosening of components of the implant system, and unwanted bone resorption.

It is critical for the practitioner to fully grasp the relationship between various combinations of bone and implant parameters and the resulting stresses on the bone from a wide range of masticatory forces.

Several implant concepts have been developed, and many implant types are commercially available in different sizes, shapes, materials, and surfaces. To analyze the effectiveness and reliability of endosseous implants, revealing possible risks of implant failure, stress analysis of bone implant mechanical interactions is important. The complex geometry of the coupled bone-implant biomechanical system prevents the use of closed-form approach for stress evaluation. Therefore, the behavior of endosteal dental implants can be investigated by using numerical techniques. Recently, the finite element method has been widely applied to prosthetic dentistry, to predict stress and strain distributions at periimplant regions, investigating the influences of implant and prosthesis designs, the magnitude and direction of loads, and bone mechanical properties, as well as modelling different clinical scenarios.

The aim of this study was to evaluate and compare the stress distribution pattern with different implant lengths in maxillary implant supported prosthesis by 3 dimensional finite element analyses.

MATERIALS AND METHOD

Three dimensional finite element models of maxilla and the implants were constructed on a personal computer with Intel Core 2 Duo Processor, 4 GB RAM, 320 GB hard disk using a series of computer software programmes - Materialise Interactive Medical Image Control System Version 8.11 (MIMICS), Hypermesh Version 10.0 and Analysis System Version 12.1 (ANSYS).

Material properties were taken from the literature. The Young’s modulus (Mega Pascal) for titanium, cortical bone, trabecular (very soft) bone, trabecular (soft) bone, trabecular bone and intermediate bone were 1,17,000×10^6, 13,700×10^6, 200×10^6, 700×10^6, 1,370×10^6 and 5,000×10^6 respectively. The Poisson’s ratio for titanium and bone were taken to be 0.33 and 0.30 respectively.

The model was divided into large number of elements and nodes. An overview of the meshes used in study and the number of elements and nodes for each model is given below. (Table I)

Table I: Number of Nodes and Elements for each model

<table>
<thead>
<tr>
<th>Models</th>
<th>No. of nodes</th>
<th>No. of elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>82951</td>
<td>444300</td>
</tr>
<tr>
<td>Model 2</td>
<td>88549</td>
<td>443938</td>
</tr>
<tr>
<td>Model 3</td>
<td>88597</td>
<td>443942</td>
</tr>
</tbody>
</table>

The bone was simulated to be of D2 density (dense to thick porous compact bone on the outside and coarse trabecular bone on the inside) in the anterior region and D3 (porous compact and fine trabecular bone) in the posterior region of the maxilla.

The implant model was generated using Computer Aided Reverse Engineering (CARE). CARE creates a computer model of an object through measurements of the tangible object, as it exists in the real world using a laser based range scanner. This model is metrically accurate within the acceptable limits.

The implant assembly consisted of Nobel Replace Tapered implants having internal tri-channel connection with a regular platform, 13 mm length, 4.3 mm diameter; and MultiUnit abutments of 4 mm length. The titanium bar used was 85 mm in length, 3 mm in thickness and 10 mm in width. The first step was measuring at the points along the surface of the implant, screw, the abutment and the titanium bar using vernier callipers. Each point has an x, y and z coordinate locating the point in 3 D space. The collection of these points is known as a point cloud. The point cloud and the detected features were then used by the CARE system to model the entire geometry of the implant, screw, abutment and the titanium bar. Implant models of lengths 8 mm, 10 mm and 11.5 mm were generated keeping the diameter of the implant constant.

KEYWORDS: 3-D finite element analysis, implant length, stress distribution
Three configurations were generated in the present study. In each configuration, the implants of 13 mm length were placed vertically (perpendicular to the occlusal plane) in the right canine region (B) and left canine region (C) and 11.5 mm length implant was placed in the right second premolar region (A). In all the configurations, the distal implant (D) length varied to 8 mm, 10 mm and 13 mm which were placed vertically with a straight abutment in the left second premolar region. (Figure 1)

Figure 1: Configuration I designed with 4 cylindrical dental implants placed in the maxilla simulating the clinical treatment of edentulous patient with fixed complete denture.

A load of 120 N was applied on the titanium bar corresponding to the position of the left second premolar abutment. (Figure 2) A colour coded display of the pattern of von Mises stress at the implant abutment junction and the implant bone junction was made. The color coding used in the study depicted red as maximum and blue as minimum and the shades in between showed variation of stresses from maximum to minimum.

Figure 2: Load of 120 N applied vertically.

RESULTS:
The maximum stresses recorded at the implant bone and implant abutment interface with varying implant length are depicted in table II.

Table II: Stresses at implant bone interface and implant abutment junction of the left second premolar for all the configurations

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Stresses at implant bone (MPa)</th>
<th>Stresses at implant abutment interface (MPa)</th>
<th>Stresses at implant abutment interface (right second premolar region) (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration I</td>
<td>5.821</td>
<td>8.261</td>
<td>0.280</td>
</tr>
<tr>
<td>Configuration II</td>
<td>5.358</td>
<td>8.131</td>
<td>0.273</td>
</tr>
<tr>
<td>Configuration III</td>
<td>4.897</td>
<td>7.754</td>
<td>0.248</td>
</tr>
</tbody>
</table>

When the four implants were splinted with a rigid fixed prosthesis, stresses at the periimplant bone and implant abutment junction on both the sides decreased as the implant length increased. (Figures 3, 4, 5 and graph I, II, III)

Figure 3: Simulation of stress transmission at periimplant bone in configuration I, II and III

Figure 4: Simulation of stress transmission at implant abutment junction in configuration I, II and III

Figure 5: Simulation of stress transmission at implant abutment junction of right second premolar in configuration III

Graph 1: Von Mises Stress Contours at implant bone interface (MPa)
Research Paper

Graph 2: Von Mises Stress Contours at implant abutment interface (MPa)

Graph 3: Von Mises Stress Contours at implant abutment interface (MPa) of the contralateral implant with increasing implant length on the left side.

DISCUSSION:
The three-dimensional (3-D) finite element models simulate with the nonsymmetric loading by the masticatory force on a dental implant results in a more satisfactory modeling of “clinical reality” than can be achieved. The results of the FEA computation depend on many individual factors, including material properties, boundary conditions, interface definition, and also on the overall approach to the model.

In the present study, stresses at the perimplant bone decreased as the implant length increased, indicating that stress distribution in the bone around the implant depends on the shape and the size of the implant. This is because the surface area contact between the bone and implant also increased, leading to the implant absorbing more of the load. Petrie et al4 in their study showing that increasing length caused as much as a 1.65-fold reduction in stresses. In a study conducted by Meijer9 it was found that in the model with connected abutments, the shorter the implant the more negative was the stress value; from -17.9 MPa with an implant of 13 mm to -23.2 MPa with an implant of 1 mm. Guan2 found that the stresses decreased within the cancellous bone and cortical bone as the implant length increased.

CONCLUSION:
On the bases of present study the following conclusion can be drawn -
1) At the implant abutment junction also there was a decrease in the stresses with an increase in implant length.
2) Stresses were also decreased at the perimplant junction with an increase in implant length.

REFERENCE