I. Introduction

Encoding the information sequence prior to transmission implies adding extra redundancy to it, which is then used at the receiver end to reconstitute the original sequence, effectively reducing the probability of errors induced by a noisy channel. Different structures of codes have developed since, which are known as channel coding. The encoder adds redundant bits to the sender’s bit stream to create a codeword. The decoder uses the redundant bits to detect and/or correct as many bit errors as the particular error control code will allow. Like any error correcting code, a Convolutional code works by adding some structured redundant information to the user’s data and then correcting errors using this information. There have been a few Convolutional decoding methods such as sequential and Viterbi decoding, of which the most commonly employed technique is the Viterbi Algorithm (VA).

Viterbi decoding was developed by Andrew J. Viterbi, the founder of Qualcomm Corporation in April, 1967 [18]. Viterbi algorithm is being widely used in many wireless and mobile communication systems for optimal decoding of Convolutional codes. The Viterbi alignment is a dynamic programming algorithm for finding the most likely sequence of hidden states – called the Viterbi path – that results in a sequence of observed events, especially in the context of Markov information sources and hidden Markov models. Applications using Viterbi decoding [9] include digital modems and digital cellular telephone, where low latency, component cost and power consumption are must.

II. Viterbi Decoder

Figure 1 shows Basic Block Diagram of Convolution Encoding and decoding which basically consists three main blocks: Convolutional Encoder, AWGN Channel and Viterbi Decoder.

A. Convolutional Encoder

In convolutional encoding n-tuple of data is generated for every k-tuple of inputs based on both current and K-1 previous k-tuples where K is called constraint length of the code. A \((n, k, m)\) convolutional code can be implemented with a k-input, n-output linear sequential circuit with input memory ‘m’. Typically, ‘n’ and ‘k’ are small integers with \(k \leq n\), but the memory order ‘m’ must be made large to achieve low error probabilities. The constraint length \(K\) of the code represents the number of bits in the encoder memory that effect the generation of the \(n\) output bits and is defined as \(K = m+1\). The code rate \(r\) of the code is a measure of the code efficiency and is defined as \(r = k/n\).

The proposed Encoder has the following specifications given below and schematic shown in Figure 2.

For Constraint Length: \(K = 3\), Input bit: \(k = 1\), Output bit: \(n = 2\) Generator Polynomials: \(G_1 = 1 + X + X^2\), \(G_2 = 1 + X^2\)

B. Viterbi Decoder

Error correction is an integral part of any communication system and for this purpose, the convolution codes are widely used as forward error correction codes. The two decoding algorithms used for decoding the Convolutional codes are Viterbi algorithm and Sequential algorithm. Sequential decoding has advantage that it can perform very well with long constraint length Convolutional codes, but it has a variable decoding time. Viterbi decoding is the best technique for decoding the Convolutional codes but it is limited to smaller constraint lengths \(K<10\) [2]. It has fixed decoding time compared to sequential decoding. With the Viterbi algorithm, storage and computational complexity are proportional to \(2^K\).

A Viterbi algorithm consists of the three major parts [15]: Branch metric unit, Path metric unit and trace back as shown in Figure 3.
lis is determined using hamming distance measure.

1) Branch metric calculation
The first unit is called Branch metric unit. The Hamming distance (or other metric) values we compute at each time instant for the paths between the states at the previous time instant and the states at the current time instant are called branch metrics. Hamming distance or Euclidean distance is used for branch metric computation.

2) Path metric calculation
An accumulated Error metric called path metric (PM) contains the 2^{k-1} optimal paths. The current Branch Metric is added to previous PM and each the two distances are compared for all Add- compare select unit.

In terms of speed the performance of Viterbi Decoder is mainly determined by the number of ACS (2^{k-1}) units and their computation time. As shown in figure each ACS unit comprises two adder blocks, a comparator and a selector block.

3) Trace back unit
The final unit is trace back unit where the survivor path and output data are identified. The Viterbi decoding flowchart is given in Figure 5.

2) Soft decision Viterbi decoding
In which output of demodulator is quantized into greater than two levels [1]. If output of demodulator is quantized into 3-bit result in 8-level output then 3-bits is used to describe each code symbol. In which Euclidian distance as a distance is measured instead of hamming distance. The advantage of using soft-decision decoding is to provide decoder with more information, which decoder then use for recovering the message sequences. It provides better error performance than hard-decision type Viterbi decoding. Disadvantage of using soft decision decoding is increase in required memory size at decoder and reduce speed.

D. Viterbi Decoding Techniques
There are mainly two types of decoding techniques available in order to decode the data at the receiver end.

1) Register Exchange Method
In this method, a register assigned to each state contains information bits for the survivor path from the initial state to current state. In fact, register keeps decoded output sequences along the time steps. Three memory blocks are used in operation: write block is used to store ACS decision vectors, Decode block where the decoded bit sequences is read in backward order and Trace Back Block which is used to find the starting point of next trance back sequences. Trace-back Depth (D) is a predefined parameter that defines the size of each memory block [15]. Traceback method is area efficient and better than RE method. Register exchange method requires complex hardware compare to the Traceback method for larger constraint length though it will give faster speed.

In this project, I had implemented a hard decision and trace back method for Viterbi decoding. The design Entry done using Xilinx ISE 10.1 Design suite.

iii) Simulation And Synthesis Results
Synthesis is a process of constructing a gate level netlist from a register transfer level model of a circuit described in Verilog HDL. Increasing design size and complexity, as well as improvements in design synthesis and simulation tools, have made Hardware Description Languages (HDLs) the preferred design languages of most integrated circuit designers. The two leading HDL synthesis and simulation languages are Verilog and VHDL. Both have been adopted as IEEE standards.

A. Simulation Waveforms of Viterbi Decoder
The Simulation Waveform of Viterbi Decoder is shown in Figure 6 (For Rate $\frac{1}{2}$ and $K = 3$) and Figure 7 (For Rate $\frac{1}{2}$ and $K = 4$). To observe the speed and resource utilization, RTL is generated, verified and synthesized using Xilinx Synthesis Tool (XST).

Fig. 6 Simulation Waveform of Viterbi Decoder (Rate $\frac{1}{2}$, K =3)
Fig. 7 Simulation Waveform of Viterbi Decoder (Rate $\frac{1}{2}$, K = 4)

B. RTL Schematic of Viterbi Decoder

Below Shown is the RTL Schematic of the Viterbi Decoder.

![RTL Schematic of Viterbi Decoder](image)

Fig 8 RTL Schematic of Viterbi Decoder

B. Device Utilization Report

This synthesis report is generated after the compilation of Design for the targeted Xilinx SPARTAN 3A based XC3S400A FPGA Device. Here, The Design unit is not implemented on targeted FPGA Device. This report contains about component used and also Timing and power summary.

<table>
<thead>
<tr>
<th>Table 1. Comparative Analysis between two constraints Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Utilization Summary (xc3s400a-4ft256)</td>
</tr>
<tr>
<td>Rate $\frac{1}{2}$, K = 3</td>
</tr>
<tr>
<td>G1: (1,1,1), G2: (1,0,1), D = 5K = 15</td>
</tr>
<tr>
<td>Logic Utilization</td>
</tr>
<tr>
<td>Used/Available</td>
</tr>
<tr>
<td>Number of Slices</td>
</tr>
<tr>
<td>104/3584</td>
</tr>
<tr>
<td>Number of Slice FFs</td>
</tr>
<tr>
<td>95/7168</td>
</tr>
<tr>
<td>Number of Bonded IOBs</td>
</tr>
<tr>
<td>4/195</td>
</tr>
<tr>
<td>Power Summary (xc3s400a-4ft256)</td>
</tr>
<tr>
<td>Power consumption: P (mw):</td>
</tr>
<tr>
<td>49 mw</td>
</tr>
</tbody>
</table>

IV Conclusions

In this Paper Resource optimized Viterbi Decoder with rate $\frac{1}{2}$ and constraint length 3 as well as 4 has been proposed. The proposed Viterbi Decoder has been designed using VHDL using traceback method. The designed Viterbi Decoder has been simulated using Xilinx ISE simulator and synthesized with XST. The simulated and synthesized results show that proposed design can work at an estimated frequency of 33.124 MHz and 14.393 MHz for constraint length 3and 4 respectively by using considerable less resources of target FPGA device SPARTAN 3A. This Paper also shows impact of constraint length on the performance. The comparative analysis result shows that as constraint length increases VLSI hardware complexity increases and Max. Frequency decreases.

REFERENCES

