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Let G be a (p, q) graph. Construct a Graph with q vertices such that q={e1, e2, e3,…,eq} and e1 and e2 are adjacent if the 
corresponding edges in G are adjacent and it is denoted by EG(G) called the Edge of the graph G.

         In this paper, we proved that Edge graph of Pn is Pn-1 i.e. EG(Pn) = Pn , Edge graph of Cnis Cn i.e. EG(Cn) = Cn , EG(k1, n) = kn, If G is r – regular then 
EG(G) is 2(r-1) regular.
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1. Introduction
A graph G is a finite non-empty set of objects called vertices 
together with a set of unordered pairs of distinct vertices of G 
which is called edges. Each pair e = {uv} of vertices in E is called 
an edge or a line of G. A graph G is called r-regular if deg(v) = r 
for each v∈ V(G). If all the vertices in a walk are distinct, then it is 
called a path and a path of length k is denoted by Pk+1. A closed 
path is called a cycle and a cycle of length k is denoted by Ck.

2. Preliminaries
Let G be a (p, q) graph. Construct a Graph with q vertices such that 
q={e

1, 
e

2, 
e

3,…,
e

q
} and e

1 
and e

2 
are adjacent if the corresponding edges 

in G are adjacent and it is denoted by EG(G) called the Edge of the 
graph G.

In this paper, we proved that Edge graph of P
n
is P

n-1
 i.e. EG(P

n
) = P

n
 , 

Edge graph of C
n
is C

n
 i.e. EG(C

n
) = C

n
, EG(k

1
, n) = k

n
, If G is r – regular 

then EG(G) is 2(r-1) regular.

3. Main Results
Theorem 3.1
Edge graph of P

n
 is P

n-1
. EG(P

n
) = P

n

Proof:
Let G= P

n ,
a path of length n-1.

Let V(P
n
) = { u

1, 
u

2, 
u

3,………,
 u

n
} such that e

i
 = (u

i
u

i+1
)

Then V[EG(P
n
)] = { e

1, 
e

2, 
e

3,………,
 e

n-1
} has n-1 vertices and 

V[EG(P
n
)] = {(e

i
e

i+1
) : 1≤ i ≤ n-2} has n-2 edges.

Hence EG(P
n
) is a graph with n-1 vertices and n-2 edges

EG(P
n
) = P

n

Theorem 3.2
Edge graph of C

n
is C

n
 . EG(C

n
) = C

n

Proof:

Let G= C
n ,

a path of length n.

Let V(C
n
) = {u

1, 
u

2, 
u

3,………,
 u

n
} and E(C

n
) = {(e

i
e

i+1
) : 1≤ i ≤ n-1; (e

1
e

n
)}

Each edge (e
i
e

i+1
) is adjacent to the edges (e

i+1
e

i+2
) and  (e

i-1
e

i
).

Hence, EG(C
n
) is a cyclic path of length n.

EG(C
n
) = C

n

Example

Theorem3.3 
EG(k1, n) = kn

Proof:
Let V(k1, n) = {u, ui : 1≤ i ≤ n} and 

E(k1, n) = {(uui) = ei : 1≤ i ≤ n }

In the graph k1, n, each edge ei is incident at u. 

Hence, every edge is adjacent to each other.

Then V[EG(k1, n)] = {ej : 1≤ i ≤ n}

Considering edges as vertices, each vertex is adjacent to every 
other vertex.

Hence, EG(k1, n) = kn

Example:
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Theorem 3.4
If G is r – regular then EG(G) is 2(r-1) regular.

Proof:
Let G be (p

1
, q

1
) graph and let G be r – regular

No. of edges incident on each vertex is r.

Considering each edge as vertex in EG(G) the no. of vertex incident on 
each vertex is r + r – 2 = 2r – 2 = 2(r-1).

Hence, EG(G) is 2(r-1).

Let EG(G) be (p2,q2) graph.

Then,    p2 = q1 =  

andq2 =  =  

 
where p is the number of vertices of G.

Results:
1)	 Let G be any graph. Let d* be the degree of a vertex in 

EG(G), then The sum of degree of 
      	 EG(G) 	 =∑ d*(e

i
)

      		  = ∑ d(u
i
) [d(u

i
)-1]

The no. of edges
  = ½ ∑ d(ui) [d(ui)-1]
2)	 For any cycle Cn , p = q, then EG(G) in (q, p)
	 G(p, q) <=> EG(G) (q, p).
3)	 If all the non – pendant vertices are of the same degree k in 

G then the sum of the degrees of vertices in nk(k-1). Where 
n is the no. of non – pendant vertices in G.

4)	 For any graph G except/ other than Pn, EG(G) contains a cy-
cle.

5)	 EG(C4) is k2,2 , the complete bipartite graph.
6)	 EG(Cn) : n even is a bipartite graph.
7)	 EG(Cn) : n even is kn/2,n/2 .
8)	 EG(G) is connected if and only if G is connected.
9)	 EG(G) is disconnected if and only if G is disconnected.
10) 	If e = u1u2 in G then for                     e V[EG(G)], 
	 d*(e) = d(u

1
) + d(u

2
) - 2

11) 	 G is regular =>EG(G) is regular 
	 Proof : Consider G is regular 
	 => d(ui) = k for all ui

∈ V(G)
	 then for each vertex ei

∈G(G) => d*(ei) = d(ui) + d(uj)– 2	
= k+k-2

	 = 2(k-1)  vei
∈ V[EG(G)]

	 Therefore, EG(G) is 2(k-1) regular
	 EG(G) is regular.
 
Remarks :
If EG(G) is regular then G need not be regular 
Let G : k1,3 is not regular but EG(k1,3) is regular

12) 	If e = uv∈(G) such that d(u) + d(v) = 2 then the correspond-
ing e∈[EG(G)] is an isolated vertex.

13) 	If e = uv∈(G) such that d(u) + d(v) = 3 then the correspond-
ing  eV[EG(G)] is an pendant vertex.

14) 	If deg(v) ≥ and deg(v)=n, v  V(G) then there is a subgraphkn 
exists in EG(G) 

15) 	 The k-star st(α
1
, α

2
,…., α

k
) is a dis connected graph with k com-

ponents  k
1
, α

1 
, k

1
,α

2 
,…., k

1
,α

k 
then 

	 EG[st(α
1
, α

2
,…., α

k
)] = (k

1
,α

1 
, k

1
, α

2 
,…., k

1
, α

k
)

16) 	 If G = k
n

c then EG(k
n

c) does not exist.
17) 	 If G is a graph of n non-interesting edges then EG(G) = k

n
c

18) 	 If an edge is a bridge then the corresponding vertex in edge 
graph EG(G) is a common vertex for the components.


