Results on Edge Graph

A. NELLAI MURUGAN
 Department of Mathematics, V.O. Chidambaram College, Tuticorin, Tamilnadu(INDIA)
 ANTO EDWIN JOSEPH IRVIN
 Department of Mathematics, V.O. Chidambaram College, Tuticorin, Tamilnadu(INDIA)

ABSTRACT

Let G be a (p, q) graph. Construct a Graph with q vertices such that $q=\{e 1, e 2, e 3, \ldots, e q\}$ and $e 1$ and e2 are adjacent if the corresponding edges in G are adjacent and it is denoted by $E G(G)$ called the Edge of the graph G.
In this paper, we proved that Edge graph of P_{n} is $P_{n}-1$ i.e. $E G\left(P_{n}\right)=P_{n^{\prime}}$, Edge graph of C_{n} is C_{n} i.e. $E G\left(C_{n}\right)=C_{n^{\prime}}, E G(k 1, n)=k_{n^{\prime}}$ If G is r regular then $E G(G)$ is $2(r-1)$ regular.

KEYWORDS : Edge Graph

1. Introduction

A graph G is a finite non-empty set of objects called vertices together with a set of unordered pairs of distinct vertices of G which is called edges. Each pair $e=\{u v\}$ of vertices in E is called an edge or a line of G. A graph G is called r-regular if deg $(v)=r$ for each $v \in V(G)$. If all the vertices in a walk are distinct, then it is called a path and a path of length k is denoted by P_{k+1}. A closed path is called a cycle and a cycle of length k is denoted by C_{k}.

2. Preliminaries

Let G be a (p, q) graph. Construct a Graph with q vertices such that $q=\left\{e_{1}, e_{2}, e_{3}, e_{q}\right\}$ and e_{1} and e_{2} are adjacent if the corresponding edges in G are adjacent and it is denoted by EG(G) called the Edge of the graph G.

In this paper, we proved that Edge graph of P_{n} is P_{n-1} i.e. $E G\left(P_{n}\right)=P_{n}$, Edge graph of C_{n} is C_{n} i.e. $E G\left(C_{n}\right)=C_{n^{\prime}}, E G\left(k_{1}, n\right)^{n}=k_{n^{\prime}}^{n-1}$ If G is $r-$ regular then $E G(G)$ is $2(r-1)$ regular.

3. Main Results

Theorem 3.1

Edge graph of P_{n} is P_{n-1}. $E G\left(P_{n}\right)=P_{n}$

Proof:

Let $G=P_{n}$, path of length $n-1$.
Let $V\left(P_{n}\right)=\left\{u_{1}, u_{2}, u_{3, \ldots \ldots \ldots,} u_{n}\right\}$ such that $e_{i}=\left(u_{i} u_{i+1}\right)$
Then $V\left[E G\left(P_{n}\right)\right]=\left\{e_{1}, e_{2}, e_{3, \ldots \ldots \ldots .,} e_{n-1}\right\}$ has $n-1$ vertices and
$\operatorname{V}\left[E G\left(P_{n}\right)\right]=\left\{\left(e_{i} e_{i+1}\right): 1 \leq i \leq n-2\right\}$ has $n-2$ edges.
Hence $E G\left(P_{n}\right)$ is a graph with $n-1$ vertices and $n-2$ edges
$E G\left(P_{n}\right)=P_{n}$

Theorem 3.2

Edge graph of C_{n} is $C_{n} . E G\left(C_{n}\right)=C_{n}$
Proof:
Let $\mathrm{G}=\mathrm{C}_{\mathrm{n}}$, a path of length n .
Let $V\left(C_{n}\right)=\left\{u_{1}, u_{2}, u_{3, \ldots \ldots \ldots,}, u_{n}\right\}$ and $E\left(C_{n}\right)=\left\{\left(e_{i} e_{i+1}\right): 1 \leq i \leq n-1 ;\left(e_{1} e_{n}\right)\right\}$
Each edge $\left(e_{i} e_{i+1}\right)$ is adjacent to the edges $\left(e_{i+1} e_{i+2}\right)$ and $\left(e_{i-1} e_{i}\right)$.
Hence, $E G\left(C_{n}\right)$ is a cyclic path of length n.
$E G\left(C_{n}\right)=C_{n}$

Example

Theorem3.3

$E G\left(k_{1}, n\right)=k_{n}$

Proof:

Let $V\left(k_{1}, n\right)=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ and
$E\left(k_{1}, n\right)=\left\{\left(u_{i}\right)=e_{i}: 1 \leq i \leq n\right\}$
In the graph k_{1}, n, each edge e_{i} is incident at u.
Hence, every edge is adjacent to each other.
Then V[EG $\left.\left(\mathrm{k}_{1}, \mathrm{n}\right)\right]=\left\{\mathrm{e}_{\mathrm{j}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$
Considering edges as vertices, each vertex is adjacent to every other vertex.

Hence, EG($\left.\mathrm{k}_{1}, \mathrm{n}\right)=\mathrm{k}_{\mathrm{n}}$
Example:

Theorem 3.4

If G is r - regular then $E G(G)$ is $2(r-1)$ regular.

Proof:

Let G be $\left(p_{1}, q_{1}\right)$ graph and let G be r - regular
$N o$ of edges incident on each vertex is r.
Considering each edge as vertex in $\mathrm{EG}(\mathrm{G})$ the no. of vertex incident on each vertex is $r+r-2=2 r-2=2(r-1)$.

Hence, $\mathrm{EG}(\mathrm{G})$ is $2(r-1)$.
Let $\mathrm{EG}(\mathrm{G})$ be $\left(\mathrm{p}_{2}, q_{2}\right)$ graph.
Then, $\mathrm{p}_{2}=\mathrm{q}_{1}=\frac{r \cdot p_{1}}{2}$
andq $_{2}=\frac{2(r-1) \cdot q_{1}}{2}=\frac{(r-1) \cdot r \cdot p_{1}}{2}$
$|E G(G)|=\frac{r(r-1) p}{2}$
where p is the number of vertices of G.

Results:

1) Let G be any graph. Let d^{*} be the degree of a vertex in $\mathrm{EG}(\mathrm{G})$, then The sum of degree of
$\mathrm{EG}(\mathrm{G})=\sum \mathrm{d}^{*}\left(\mathrm{e}_{\mathrm{i}}\right)$ $=\sum \mathrm{d}\left(\mathrm{u}_{\mathrm{i}}\right)\left[\mathrm{d}\left(\mathrm{u}_{\mathrm{i}}\right)-1\right]$
The no. of edges
$|E G(G)|=1 / 2 \sum \mathrm{~d}\left(u_{i}\right)\left[\mathrm{d}\left(\mathrm{u}_{\mathrm{i}}\right)-1\right]$
2) For any cycle $C_{n} p=q$, then $E G(G)$ in (q, p) $G(p, q)<=>E G(G)(q, p)$.
3) If all the non - pendant vertices are of the same degree k in G then the sum of the degrees of vertices in $n k(k-1)$. Where n is the no. of non - pendant vertices in G .
4) For any graph G except/ other than $P_{n,} E G(G)$ contains a cycle.
5) $E G\left(C_{4}\right)$ is $k_{2,2}$, the complete bipartite graph.
6) $\mathrm{EG}\left(\mathrm{C}_{\mathrm{n}}\right)$: n even is a bipartite graph.
7) $E G\left(C_{n}\right): n$ even is $k_{n / 2 / n / 2}$.
8) $\mathrm{EG}(\mathrm{G})$ is connected if and only if G is connected.
9) $\mathrm{EG}(\mathrm{G})$ is disconnected if and only if $C \in \in$:onnected.
10) If $e=u_{1} u_{2}$ in G then for
$d^{*}(e)=d\left(u_{1}\right)+d\left(u_{2}\right)-2$
11) G is regular $=>E G(G)$ is regular

Proof: Consider G is regular
$\Rightarrow d\left(u_{i}\right)=k$ for all $u_{i}^{\in} V(G)$
then for each vertex $e_{i}{ }^{\epsilon} G(G)=>d^{*}\left(e_{i}\right)=d\left(u_{i}\right)+d\left(u_{j}\right)-2$
$=k+k-2$
$=2(k-1) \forall e_{i}^{\in} V[E G(G)]$
Therefore, EG(G) is 2(k-1) regular
$\mathrm{EG}(\mathrm{G})$ is regular.

Remarks:

If $E G(G)$ is regular then G need not be regular Let $\mathrm{G}: \mathrm{k}_{1,3}$ is not regular but $\mathrm{EG}\left(\mathrm{k}_{1,3}\right)$ is regular

12) If $e=u v^{E}(G)$ such that $d(u)+d(v)=2$ then the corresponding $e^{\epsilon}[E G(G)]$ is an isolated vertex.
13) If $e=u v^{\xi}(G)$ such that $d(u)+d(v)=3$ then the corresponding $\operatorname{eV}[E G(G)]$ is an pendant vertex.
14) If $\operatorname{deg}(v) \geq$ and $\operatorname{deg}(v)=n, v V(G)$ then there is a subgraphk ${ }_{n}$ exists in $\mathrm{EG}(\mathrm{G})$
15) The k -star $\operatorname{st}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ is a dis connected graph with k components $k_{1}, \alpha_{1}, k_{1}, \alpha_{2}, \ldots, k_{1}, a_{k}$ then
$E G\left[s t\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)\right]=\left(k_{1}, \alpha_{1}, k_{1}, \alpha_{2}, \ldots, k_{1}, \alpha_{k}\right)$
16) If $G=k_{n}{ }^{\text {c }}$ then $E G\left(k_{n}{ }^{c}\right)$ does not exist.
17) If G is a graph of n non-interesting edges then $E G(G)=k_{n}{ }^{c}$
18) If an edge is a bridge then the corresponding vertex in edge graph $\mathrm{EG}(\mathrm{G})$ is a common vertex for the components.

REFERENCES Addition - Wesley publishing company Inc, USA, 1969.

