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Competing risks arise in studies when subjects are exposed to more than one cause of failure. The standard Kaplan-
Meier method for survival analysis does not yield valid results for a particular risk if failures from other causes are treated 
as censored. A useful quantity for the competing risk analysis is the cumulative incidence function (CIF). Tuberculosis 

treatment contains at least few drugs and the toxicity may occur due to any one of the drugs which could affect cure of the patient. This paper 
presents the application of a cause specific hazard model in the analysis of toxicity data in the treatment using multi-drug regimens
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Introduction
The standard survival analysis considers the time until an event oc-
curs. In clinical trial a person can experience toxicity due to one of 
several drugs and the toxicity times of other drugs are competing 
risks (Pintilie, 2007). Survival time analysis by standard methods, such 
as the Kaplan-Meier (KM) method (Kaplan and Meier, 1958) and the 
standard Cox model (Lunn and McNeil, 1995), not distinguish differ-
ent causes in the presence of competing risks. Alternative approach-
es use the cumulative incidence estimator by the Cox models on 
cause-specific and on subdistribution hazards models (Fine and Gray, 
1999).

Censoring may occur for multiple reasons including loss to follow-up, 
participant withdrawal, and study termination prior to observation of 
the target event. If it is reasonable to assume that those participants 
remaining in the risk set are representative of all who would be at 
risk for the target event, then we have independent censoring. Under 
this assumption, testing of group effects and modeling of the sur-
vival function may be carried out with the KM method. The marginal 
probability of the event, the cumulative incidence function (CIF), may 
then be estimated by 1−KM. In the presence of covariates, evaluation 
of group and covariate effects on the hazard function and then the 
modeling of the hazard and survival functions may be performed 
with the Cox proportional hazards method (Gooley et al., 1999). Ad-
ditionally, other events may occur that preclude the occurrence of 
the target event. The analysis of each cause-specific hazard is the 
standard analysis procedure for these data, allowing for the covari-
ate effects on the hazard of the target event to be evaluated in the 
presence of competing risk events. Computationally, individuals who 
experience the competing event are censored at that event time, and 
there is no difference between varying causes of censoring. Separate 
cause-specific proportional hazards models may then be fitted for 
each failure type, assuming only independent censoring (Kalbfleisch 
and Prentice, 2002).

Generally, for non-informative censoring event, the covariate effects 
are often estimated with the Cox proportional hazards method (Cox, 
1972). While this approach is valid for evaluating the cause-specific 
hazard of the target event, in practice the analysis of the complimen-
tary cause-specific hazard of a particular event is often excluded. The 
estimates of the target event probabilities are either overestimated 
with the 1−KM estimate or foregone completely (Gaynor and Feuer, 
1993). When the marginal probabilities are of interest, we may model 
the proportional hazards of the sub-distribution, and therefore direct-
ly assess covariate effects on the probability of the-target event in the 
presence of competing risk. The proportional hazards models for the 
sub-distribution, also known as the cumulative incidence function is 
for a specific failure type in a competing risks analysis (Prentice et al., 
1978). We then apply and compare cause-specific Cox proportional 
hazards models with proportional sub distribution hazards models. 

Cox regression approach for specific hazards
This model assumes a non-parametric baseline hazard function. One 
way for estimating such a model is to estimate a proportional hazard 
parametric model with a step function that is constant between every 
two consecutive event times thus estimating the most detailed haz-
ard function possible (Klein and Andersen, 2005). If the ranked event 
times are t
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Model specification
Define, for each individual, the pair (T,C) where T is the failure time, 
and C is the failure cause. T is assumed to be a continuous and posi-
tive random variable, while C takes values in the finite set {1,2,…,k}.  
Assume that the individual fails from one and only one cause. The 
joint distribution of (T,C) is completely specified through either the 
cause-specific hazards, )t(h j and through the cumulative incidence 
functions )t(Fj . They are relevant when two or more causes of failure 
act simultaneously, but the smallest failure time and its type only are 
observed. In other words, each failure time is potentially right cen-
sored by every other failure times. The recent approach to competing 
risks is considering the joint distribution of failure time T and cause of 
failure C, two observable random variables (Kalbfleisch and Prentice, 
1980; Crowder, 2001). 

Cause-specific Hazard Function
Various approaches have been suggested in competing risks analysis. 
One intuitive way is to use the cause-specific hazard function (Chiang, 
1970) which is defined as
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The function h
j
(t;x) represents the instantaneous failure rate from 

cause j at time t in the presence of other failure types, given a covar-
iate vector x. In the context of competing risks, the Cox proportional 
hazard model is often used to evaluate the covariate effects (Prentice 
et al., 1978) and is defined as follow

m1,2,...,j    ;     )xexp()t(h)x|t(h jj0j =β=
 (3)

 
where h

0j
(t) is the baseline hazard function β

j
 is a column vector of 

covariate coefficients of cause j. The model does not imply the failure 
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rate with removal of some or all other failure types and the model of 
cause j does not restrict the proportional hazard form of other failure 
types.

Cumulative Incidence Function
The cumulative incidence function helps to determine patterns of 
failure and to assess the extent to which each component contributes 
to overall failure. The Kaplan-Meier (KM) method has been a widely 
used tool for estimating survival function and cumulative incidence 
function, a complementary of survival function. This method is con-
ceptually easy to understand and easy to calculate.  However, if there 
is more than one type of event (or failure), and if these events are 
dependent, KM estimates are biased (Gray, 1988).  This bias arises be-
cause the KM method assumes that all events are independent, and 
thus, censors events other than the event of interest.  The CIF is an im-
portant quantity related to one risk in the context of competing risks. 
The CIF curve provides a better incidence curve associated with one 
risk that 1–KM. It also provides a meaningful interpretation in terms 
of failure due to one risk regardless of whether competing risks are 
independent (Zhang and Fine, 2008). 

The cumulative incidence function from type j failure is defined by,

 k1,2,...,j    , )jC,tT(P)t(Fj ==≤=  (4)

and corresponds to the sub-distribution function for the probability 
of a subject failing from cause j in the presence of all the competing 
risks.

The cause-specific cumulative hazards )t(jΛ , the overall hazard )t(λ , 
the overall cumulative hazard )t(Λ  and the overall survival function 
S(t) are defined, respectively, as:
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The survival function can be factorized into the following k functions 
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The sub-density functions f
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(t) from cause j, the marginal distribution 

F(t) of T, and the marginal distribution of C are respectively given by:
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Competing Risk Problem in Clinical Trials
The patients who were not responded the treatment (at least for two 
drugs that is Isoniazid and Rifampicin) is called multidrug-resistant 
tuberculosis (MDR-TB) patients. The MDR-TB patients were treated 
with the TB drugs of Injection Kanamycin, Ethinomide, other anti-TB 
drugs (Cycloserine, Ofloxacin, Ethambutol, PAS and Capreomycin). The 
patients may develop toxicity for one or more drugs and it may lead 
to failure of treatments. The event of interest for the analysis is toxic-
ity during treatment. A majority number of patients develop toxicity 
due to Kanamycin and Ethinomide. The other drugs effect is minimal. 
Hence, in this work, the toxicity is categorized in to three types: due 
to   Kanamycin (K), Ethinomide (Eth) and others. 

The aim is to estimate the specific cause effect using the Cause specif-
ic hazards function and Cumulative Incidence Function. 

The data consists of 86 multidrug-resistant tuberculosis (MDR-TB) pa-
tients’ details from the National Institute for Research in Tuberculosis, 
ICMR, Chennai.

Results
Probability values for the effect of Inj. Kanamycin Toxic

Failure time
(month) CIF StdErr Lower 95% 

Limits
Upper  95% 

Limits

0 0.00000 0.00000 0.00000 0.00000

2 0.01333 0.01333 0.00112 0.06444

3 0.02828 0.01990 0.00525 0.08875

4 0.04421 0.02523 0.01151 0.11319

6 0.11013 0.03976 0.04781 0.20175

7 0.12661 0.04236 0.05852 0.22208

8 0.14443 0.04516 0.07023 0.24423

9 0.18246 0.05069 0.09605 0.29075

13 0.20650 0.05476 0.11158 0.32153

17 0.23589 0.06037 0.12950 0.36036

19 0.26528 0.06506 0.14864 0.39704

20 0.29467 0.06903 0.16878 0.43207

22 0.32826 0.07382 0.19115 0.47240

24 0.37024 0.08095 0.21667 0.52439

30 0.42272 0.09088 0.24545 0.58989

33 0.50519 0.11344 0.27229 0.69879

36 0.60415 0.13428 0.30235 0.80872

 
The above table shows the probability values for different months. 
The lowest probability value for the month of 4 is 0.04421 (4%) and 
the end of the followed-up period 36 month shows the estimated 
probability is 0.60415 (60%).

Probability values for the effect of Ethinomide toxic

Failure time
(months) CIF StdErr Lower 95% 

Limits
Upper  95% 

Limits

0 0.00000 0.00000 0.00000 0.00000

1 0.04651 0.02284 0.01502 0.10626

2 0.07194 0.02852 0.02914 0.14097

3 0.08600 0.03141 0.03746 0.16000

5 0.10123 0.03444 0.04669 0.18053

7 0.11788 0.03767 0.05693 0.20289

8 0.13588 0.04106 0.06818 0.22685

10 0.17703 0.04853 0.09428 0.28097

12 0.26144 0.05948 0.15405 0.38205

13 0.28316 0.06168 0.17037 0.40675

15 0.30628 0.06401 0.18773 0.43301

16 0.32941 0.06606 0.20555 0.45866

20 0.35623 0.06886 0.22540 0.48915

22 0.38689 0.07239 0.24728 0.52444

25 0.42776 0.07896 0.27245 0.57431

36 0.54221 0.13072 0.26590 0.75363

 
The probability values for the cause specific to Ethinomide toxic in the  
month of 7 is 0.11788 (12%) and the end of the followed-up period 
36 month shows the estimated probability is 0.54221 (54%).
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Probability values for the effect of OTHER drugs toxic

Failure time
(months)

CIF StdErr Lower 95% 
Limits

Upper  95% 
Limits

0 0.00000 0.000000 0.00000 0.00000
1 0.08140 0.029659 0.03563 0.15154
2 0.15488 0.039797 0.08688 0.24081
3 0.19330 0.043816 0.11606 0.28530
5 0.20674 0.045135 0.12645 0.30073
7 0.25081 0.049397 0.16069 0.35126
8 0.28139 0.051988 0.18505 0.38558
9 0.29736 0.053282 0.19787 0.40337

10 0.31409 0.054637 0.21129 0.42201
12 0.33168 0.056066 0.22537 0.44158
14 0.35256 0.058191 0.24127 0.46561
16 0.39573 0.062042 0.27489 0.51402
20 0.41990 0.064278 0.29341 0.54113
21 0.44626 0.066782 0.31331 0.57067
22 0.49900 0.070511 0.35509 0.62706
23 0.52847 0.072613 0.37800 0.65830
29 0.59583 0.077253 0.42919 0.72835
30 0.62951 0.078417 0.45642 0.76103
31 0.70361 0.079848 0.51590 0.82968
32 0.74066 0.079082 0.54728 0.86112
33 0.77771 0.077249 0.57964 0.89057
36 0.91108 0.062607 0.67333 0.97831

 
The probability values for the cause specific to other TB drugs for the  
month of 2 is 0.15488 (15%) and the end of the followed-up period 
36 month shows the estimated probability is 0.91108 (91%).

Estimates for the cause specific to Kanamycin
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Wt 1 -0.00190 0.01939 0.0096 0.9220 0.998 0.961 1.037

Age 1 -0.02362 0.02462 0.9203 0.3374 0.977 0.931 1.025

Gender 1 0.05951 0.49799 0.0143 0.9049 1.061 0.400 2.817

-2LL 137.810
 
The above table shows that the results of cause-specific Cox propor-
tional hazard models, for the cause specific to Kanamycin toxic and 
the other drugs toxic were censored.  The lower hazard value (0.977) 
shows for weight and the other two hazard values for age and gender 
shows also similar results.

Estimates for the cause specific to Ethinomide
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Wt 1 -0.00926 0.02082 0.1976 0.6567 0.991 0.951 1.032

Age 1 -0.04851 0.02452 3.9139 0.0479 0.953 0.908 1.000

Estimates for the cause specific to Ethinomide
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Gender 1 0.97551 0.51247 3.6236 0.0570 2.653 0.972 7.242

-2LL 164.704

 
The above table result shows the hazard values for the cause specific 
Ethinomide toxic and the other drugs toxic were censored. The low-
er hazard ratio for age 0.953 and the higher hazard value gender is 
2.653.

Estimates for the cause specific OTHER drugs
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Wt 1 -0.01552 0.01372 1.2800 0.2579 0.985 0.958 1.011

Age 1 0.00302 0.01408 0.0459 0.8304 1.003 0.976 1.031

Gender 1 0.56156 0.36296 2.3938 0.1218 1.753 0.861 3.571

-2LL 299.361

 
The cause specific to other anti-TB drugs (Cycloserine, Ofloxacin, Eth-
ambutol, PAS and Capreomycin) the hazard ratio shows the higher 
hazard value for gender 1.753 and the other two hazard values for 
weight and age shows similar values.

Cumulative Incidence Curves for Different Causes

From the above three CIF curves clearly shows the higher estimated 
probability values for the cause specific to other anti-TB drugs toxic.  

Discussion
The cause-specific proportional hazards model and proportional sub-
distribution hazards model are the methods applied to calculate the 
estimates of the effect of toxic developed by the Kanamycin, Ethino-
mide and other anti-TB drugs. For quantifying the prognostic effect of 
covariates, a natural choice would be to estimate them with cumula-
tive incidence functions. Comparisons of the cumulative incidence for 
specific types of effect may provide additional information about the 
treatment differences. The cause related to the other anti-TB drugs in 
36th month shows  91% estimated probability whereas the other es-
timated probabilities values for Kanamycin is 60% and Ethinomide is 
54%. The CIF curves also clearly shows the higher estimated probabili-
ty values for other anti-TB drugs toxic.

REFERENCES 1. Chiang, C L (1970): Competing risks and conditional probabilities, Biometrics, 26, 4,767-776. | 2. Cox, D R (1972): Regression model 
and life tables, Journal of the Royal Statistical society (B), 34, 187-220. | 3. Crowder, M (2001): Classical Competing Risks, Boca Raton, 
Chapman & Hall, CRC. | 4. Fine, J and Gray, R (1999): A Proportional Hazards Model for the Subdistribution of a Competing Risk, Journal 

of the American Statistical Association, 94, 496-509. | 5. Gaynor, J J and Feuer, E J (1993): On the Use of Cause-Specific Failure and Conditional Failure Probabilities: 
Examples from Clinical Oncology Data, Journal of the American Statistical Association, 88, 400-409. | 6. Gooley, T A, Leisenring, W and Storere, B E (1999): Estimation of 
failure probabilities in the presence of competing risks new representations of old estimators, Statistics in Medicine, 18,695-706. | 7. Gray, R (1988): A Class of K-Sample 
Tests for Comparing the Cumulative Incidence of a Competing Risk, The Annals of Statistics, 16, 1141-54. | 8. Kalbfleisch, J D and Prentice, R L (1980): The statistical 
analysis of failure time data, New York, John Wiley & Sons, Inc. | 9. Kalbfleisch, J D and Prentice, R L (2002): The Statistical Analysis of Failure Time Data, Wiley, New York. 
| 10. Kaplan, E L and Meier, P (1958): Nonparametric estimation from incomplete observations, Journal of the American Statistical Association, 53, 457-81. | 11. Klein, J P 
and Andersen, P K (2005): Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function, Biometrics, 61:223-29. | 12. Lunn, 
M and McNeil, D (1995): Applying Cox regression to competing risks, Biometrics 51:524-532. | 13. Pintilie, M (2007): Analysing and interpreting competing risk data, 
Statistics in Medicine, 26:1360-1367. | 14. Prentice, R L, Kalbfleisch, J D, Peterson, A V, Flournoy, N, Farewell, V T and Breslow, N E (1978): The analysis of failure times in 
the presence of competing risks, Biometrics, 34, 541–554. | 15. SAS Institute Inc. SAS/STAT 9.2 Users’ Guide. Chapter 64: The PHREG Procedure Cary, NC: SAS Institute Inc. 
| 16. Zhang, M J and Fine, J (2008): Summarizing differences in cumulative incidence functions, Statistics in Medicine, 27:4939-49.


