
GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 53

Volume-3, Issue-7, July-2014 • ISSN No 2277 - 8160

Research Paper Computer Science

Implement Agility to Improve Today’s Business in Software
Developing Companies

Hemina C. Bhavsar Lecturer in S.S.Agrawal College Of Computer Science, Navsari-396445.

Today’s software development companies deliver software in a shortest time. Software systems that once took years
to deliver can now be created in months. The enabler of this transformation is the agile software process. As changes
arise in software, developer has to implement changes in a correct manner. For impalement changes agility is the most

important method. This paper shows actual meaning of agility. I had written why agility necessary in development. This paper also shows agile
process, agile methods and advantages. Developers who apply the agility into development have to follow some agility principles which are also
mention in this paper.

ABSTRACT

KEYWORDS : XP, FDD, ASD, LSD, AM, AUP, DSDM

1: Introduction to software development
Software development is the computer programming, document-
ing, and testing involved in creating and maintaining applications
and frameworks involved in a software release life cycle and resulting
in a software product.

2: What is Agile and Agility?
•	 Agile is the today’s buzzword. Everyone is Agile today. Agile is a
set of values,

–	 Individuals/Interactions
–	 Working software
–	 Customer collaboration
–	 Responding to change.

•	 Now day’s people’s mentality is change, they want changes every
time. And the thing or product which is able to respond immediate-
ly when user wants change that is called agile.

•	 Agility is the strength of the members of the team who appropri-
ately respond to change.

3: Reason to implement Agility into software develop-
ment
•	 Every customer needs change in his software, whether software

is developing or developed. In fear of scope creep and a nev-
er-ending project, we resist changes and put people through a
change control committee to keep them to the essential mini-
mum.

•	 Because the one thing that’s certain in life is change. Instead the
timescale is fixed and requirements emerge and evolve as the
product is developed. Of course for this to work, it’s imperative
to have an actively involved stakeholder who understands this
concept and makes the necessary trade-off decisions, trading ex-
isting scope for new.

4: How Agile Process should be?
Any agile software process is characterized in a manner that address-
es a number of key assumptions about the majority of software pro-
jects:

1. It is difficult to predict in advance which software requirements
will persist and which will change. It is equally difficult to predict how
customer priorities will change as the project proceeds.

2. For many types of software, design and construction are inter-
leaved. It is difficult to predict how much design is necessary before
construction is used to prove the design.

3. Analysis, design, construction, and testing are not as predictable
(from a planning point of view).

•	 Given these three assumptions, an important question arises:
How do we create a process that can manage unpredictability?

The answer is that an agile process, therefore, must be adaptable.

•	 But continual adaptation without forward progress accomplishes
little. Therefore, an agile software process must adapt incremen-
tally.

•	 To accomplish incremental adaptation, an agile team requires
customer feedback. An effective catalyst for customer feedback is
an operational prototype or a portion of an operational system.
Hence, an incremental development strategy should be institut-
ed.

•	 Software increments (executable prototypes) must be delivered
in short time periods so that adaptation keeps pace with change.

5: Agility Principles
1.	 Our highest priority is to satisfy the customer through early and

continuous delivery of valuable software.
2. 	 Welcome changing requirements, even late in development
3. 	 Deliver working software frequently, from a couple of weeks to a

couple of months, with a preference to the shorter timescale.
4. 	 Business people and developers must work together daily

throughout the project.
5. 	 Build projects around motivated individuals.
6. 	 Within a development team is face-to-face conversation.
7. 	 Working software is the primary measure of progress.
8. 	 Agile processes promote sustainable development.

6: Agile Methods
A.	 Extreme Programming
•	 Extreme Programming (XP) developing methodology suitable

for “object-oriented projects using teams of dozen or fewer pro-
grammers in one location.”

•	 The methodology based upon five underlying values: communi-
cation, simplicity, feedback, courage, and respect.

• Activities of XP:

(I)	 Planning:
The planning activity begins with listening requirements that is
gathering activity that enables the technical members of the XP team
to understand the business context for the software. Listening leads
to the creation of a set of “stories” that describe required output, fea-

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 54

Volume-3, Issue-7, July-2014 • ISSN No 2277 - 8160

tures, and functionality for software to be built. Each story is written
by the customer and is placed on an index card. The customer assigns
a value (priority) to the story based on the overall business value of
the feature or function. Members of the XP team then assess each
story and assign a cost measured in development weeks to it. If the
story is estimated to require more than three development weeks, the
customer is asked to split the story into smaller stories and the assign-
ment of value and cost occurs again.

(II)	Designing
XP design rigorously follows the KIS (keep it simple) principle. The
design of extra functionality is discouraged. XP encourages the use of
CRC cards as an effective mechanism for thinking about the software
in an object-oriented context. CRC (class-responsibility collaborator)
cards identify and organize the object-oriented classes that are rele-
vant to the current software increment.

(III) Coding
•	 After stories are developed and preliminary design work is done,

the team does not move to code, but rather develops a series of
unit tests that will exercise each of the stories that is to be includ-
ed in the current release (software increment). Once the unit test
has been created, the developer is better able to focus on what
must be implemented to pass the test.

•	 A key concept during the coding activity (and one of the most
talked about aspects of XP) is pair programming. XP recom-
mends that two people work together at one computer work-
station to create code for a story. This provides a mechanism for
real time problem solving and real-time quality assurance. It also
keeps the developers focused on the problem at hand.

(IV) Testing
•	 The unit tests that are created should be implemented using a

framework that enables them to be automated. This encourages
a regression testing strategy whenever code is modified known
as XP refactoring philosophy.

•	 As the individual unit tests are organized into a “universal testing
suite” , integration and validation testing of the system can occur
on a daily basis.

B.	 SCRUM
•	 Scrum principles are consistent with the agile manifesto and are

used to guide development activities.

•	 The overall flow of the Scrum process is illustrated in Figure No.2.
Scrum emphasizes the use of a set of software process patterns:

•	 Backlog—a prioritized list of project requirements or features
that provide business value for the customer. Items can be add-
ed to the backlog at any time. The product manager assesses the
backlog and updates priorities as required.

•	 Sprints—consist of work units that are required to achieve a re-
quirement defined in the backlog that must be fit into a prede-
fined time-box14 (typically 30 days).

•	 Scrum meetings—are short (typically 15 minutes) meetings held
daily by the Scrum team. Three key questions are asked and an-
swered by all team members:

•	 What did you do since the last team meeting?
•	 What obstacles are you encountering?
•	 What do you plan to accomplish by the next team meeting?
•	 A team leader, called a Scrum master, leads the meeting and as-

sesses the responses from each person. The Scrum meeting helps
the team to uncover potential problems as early as possible.

•	 Demos—deliver the software increment to the customer so that

functionality that has been implemented can be demonstrated
and evaluated by the customer.

C.	 Crystal
Crystal method is used to achieve a software development approach
that puts a premium on “maneuverability” that is “a resource limited,
cooperative game of invention and communication, with a primary
goal of delivering useful, working software and a secondary goal of
setting up for the next game”.

D.	 Future Driven Development
Like other agile approaches, FDD adopts a philosophy that (1) em-
phasizes collaboration among people on an FDD team; (2) manages
problem and project complexity using feature-based decomposition
followed by the integration of software increments, and (3) commu-
nication of technical detail using verbal, graphical, and text-based
means.

E.	 Adaptive Software Development
Adaptive Software Development (ASD) has been proposed for build-
ing complex software and systems. The philosophical underpinnings
of ASD focus on human collaboration and team self-organization.

•	 During speculation, the project is initiated and adaptive cycle
planning is conducted. Adaptive cycle planning uses project initiation
information the customer’s mission statement, project constraints and
basic requirements to define the set of release cycles (software incre-
ments) that will be required for the project.

•	 Motivated people use collaboration in a way that multiplies their
talent and creative output beyond their absolute numbers.

•	 As members of an ASD team begin to develop the components
that are part of an adaptive cycle, the emphasis is on “learning”
as much as it is on progress toward a completed cycle.

•	 ASD teams learn in three ways: focus groups, technical reviews,
and project postmortems.

F.	 DSDM
The Dynamic Systems Development Method (DSDM) is an ag-
ile software development approach that “provides a framework for
building and maintaining systems which meet tight time constraints
through the use of incremental prototyping in a controlled project
environment”. The DSDM philosophy is borrowed from a modified
version of the Pareto principle “80 percent of an application can be
delivered in 20 percent of the time it would take to deliver the com-
plete (100 percent) application”. DSDM is an iterative software pro-
cess in which each iteration follows the 80 percent rule. That is, only
enough work is required for each increment to facilitate movement to
the next increment.

G.	 Lean Software Development (LSD)
Lean Software Development (LSD) has adapted the principles of
lean manufacturing to the world of software engineering. The lean
principles that inspire the LSD process can be summarized as elimi-
nate waste, build quality in, create knowledge, defer commitment,
deliver fast, respect people, and optimize the whole.

H.	 Agile Modeling (AM)
There are many situations in which software engineers must build
large, business critical systems. The scope and complexity of such
systems must be modeled so that (1) all Constituencies can better
understand what needs to be accomplished, (2) the problem can be
partitioned effectively among the people who must solve it, and (3)
quality can be assessed as the system is being engineered and built.

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 55

Volume-3, Issue-7, July-2014 • ISSN No 2277 - 8160

I.	 Agile Unified Process (AUP)
The Agile Unified Process (AUP) adopts a “serial in the large” and
“iterative in the small” philosophy for building computer-based sys-
tems. By adopting the classic UP phased activities: inception, elabo-
ration, construction, and transition.

7: Agile Advantages and disadvantages
(I)	 Revenue
(II)	 Speed-to-market
(III)	 Quality
(IV)	 Visibility
(V)	 Risk Management
(VI)	 Cost
(VII)	Business Engagement/Customer Satisfaction
(VIII)More Enjoyable!

8: Conclusion
Agility is today’s required concept which we must have to implement
in development of software for faster completion of software with
good quality. Instead of big specs, we discuss requirements in work-
shops. Instead of lengthy status reports, we collaborate around a task-
board discussing progress. Instead of long project plans and change
management committees, we discuss what’s right for the product and
project and the team is empowered to make decisions. In my expe-
rience this makes it a much more rewarding approach for everyone.
In turn this helps to create highly motivated, high performance teams
that are highly cooperative.

REFERENCES 1. The Characteristics of Agile Software Processes, Granville G. Miller, rmiller@togethersoft.com, TogetherSoft | 2. Essential Scrum Presented by
Tobias Mayer, 11/7/2008, at Baldwin-Wallace College Professional Development, co-sponsored by Cleveland Scrum Alliance & NEOPMI | 3. An
Introduction to Agile Software Development, June 2007, serena.com | 4. Engineering of Unstable Requirements Using Agile Methods , James E.

Tomayko | Carnegie Mellon University, jet@cs.cmu.edu | 5. Impact of Agile Software Development on Quality within Information Technology Organizations Robert Imreh , Mahesh
S. Raisinghani, ISSN 2079-8407 | 6. http://www.allaboutagile.com/10-good-reasons-to-do-agile-development/#sthash.qGFWREkv.dpuf | 7. Software Engineering, A Practitioner’s
Approach, Roger S. Pressman, Ph.D. |

