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1. Introduction:  

Mathematical Models have become 
important tools in analyzing the spread and 
control of infectious diseases. In this 
process, rate of incidence plays a crucial 
role. The incidence is an epidemiological 
model is the rate at which susceptible 
become infectious. Bilinear and std. 
incidence rate have been frequently used 
in classical epidemic models Capasso and 
Serio[2] introduced a saturated incidence 
rate 𝑔𝑔𝑔𝑔(𝐼𝐼𝐼𝐼)𝑆𝑆𝑆𝑆 into epidemic models, where 
𝑔𝑔𝑔𝑔(𝐼𝐼𝐼𝐼)  tends to a saturation level when 𝐼𝐼𝐼𝐼 
gets large, i.e., 𝑔𝑔𝑔𝑔(𝐼𝐼𝐼𝐼) = 𝐾𝐾𝐾𝐾𝐼𝐼𝐼𝐼 (1 + 𝛼𝛼𝛼𝛼𝐼𝐼𝐼𝐼)⁄ . Mena 
Lorca and Hethcote [11] also analyzed an 
SIRS model with the same saturation 
incidence. Several different incidence rates 
have been proposed by other researchers. 
Nonlinear incidence rate of the form 
𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆𝑞𝑞𝑞𝑞  were investigated by Liu. et.al. 
[10]. A very general form of non-linear 
incidence rate was considered by Derrick 
and Driessche [3]. Ruan and Wang [12] 
studied an epidemic model with a specific 
non-linear incidence rate 𝑘𝑘𝑘𝑘𝐼𝐼𝐼𝐼2𝑆𝑆𝑆𝑆 (1 + 𝛼𝛼𝛼𝛼𝐼𝐼𝐼𝐼2)⁄  
and presented a detailed qualitative and 
bifurcation analysis of the model. A more 
general incidence 𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆 (1 + 𝛼𝛼𝛼𝛼𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞)⁄  was 
proposed by many other researchers [1,4,9, 
11,13,&14]. Xiao and Ruan [15] proposed 
an epidemic model with non-monotonic 
incidence rate 𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆 (1 + 𝛼𝛼𝛼𝛼𝐼𝐼𝐼𝐼2)⁄ . Besides the 
rate and nature of incidence, treatment 
plays an important role to control the 
spread of diseases. This model is 
investigated and analyzed by Kar and 
Batabyal [7].Wang[13] proposed a 
treatment function 

𝑇𝑇𝑇𝑇(𝐼𝐼𝐼𝐼) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0 ≤ 𝐼𝐼𝐼𝐼 ≤ 𝐼𝐼𝐼𝐼0 

𝐾𝐾𝐾𝐾1, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼 > 𝐼𝐼𝐼𝐼0                                              (1) 

Where 𝐾𝐾𝐾𝐾1 = 𝑟𝑟𝑟𝑟𝐼𝐼𝐼𝐼0 for some fixed value 
𝐼𝐼𝐼𝐼0.Kar and Batabyal [7] proposed a SIR 
model with non-monotonic incidence rate 
suggested by Xiao and Ruan [15] 
incorporating the above treatment function 
and non-monotonic incidence rate under a 
treatment function. 

2. The Mathematical Model: 

Following Kar and Batabyal [7], the 
proposed model is 

   
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑎𝑎 − 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆 −
𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆

1 + 𝛼𝛼𝛼𝛼𝐼𝐼𝐼𝐼2 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 + 𝜇𝜇𝜇𝜇  (2 ) 

   
𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆

1 + 𝛼𝛼𝛼𝛼𝐼𝐼𝐼𝐼2 − (𝑑𝑑𝑑𝑑 + 𝑚𝑚𝑚𝑚)𝐼𝐼𝐼𝐼 − 𝑇𝑇𝑇𝑇(𝐼𝐼𝐼𝐼)    (3) 

  
𝑑𝑑𝑑𝑑𝛽𝛽𝛽𝛽
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 − (𝑑𝑑𝑑𝑑 + 𝛽𝛽𝛽𝛽)𝛽𝛽𝛽𝛽 + 𝑇𝑇𝑇𝑇(𝐼𝐼𝐼𝐼)            (4)    

Where 𝑆𝑆𝑆𝑆(𝑑𝑑𝑑𝑑), 𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑),𝛽𝛽𝛽𝛽(𝑑𝑑𝑑𝑑) denote the number 
of susceptible, infective, recovered 
individuals, respectively. a is the 
recruitment rate of the population, d is the 
natural death rate of the population, λ is 
the proportionality constant, m is the 
natural recovery rate of the infective 
individuals, β is the rate at which 
recovered individuals lose immunity and 
return to susceptible class, μ the increase 
of at a constant rate and 𝛼𝛼𝛼𝛼 is the parameter 
measures of the psychological or 
inhibitory effects and all other parameters 
have the same meaning as given in [9]. In 
this work take the treatment function 𝑇𝑇𝑇𝑇(𝐼𝐼𝐼𝐼) 
defined by 

𝑇𝑇𝑇𝑇(𝐼𝐼𝐼𝐼) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0 ≤ 𝐼𝐼𝐼𝐼 ≤ 𝐼𝐼𝐼𝐼0 

𝐾𝐾𝐾𝐾1, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼 > 𝐼𝐼𝐼𝐼0  

This means that the treatment rate is 
proportional to the infective when the 
number of infective is less or equal to 
some fixed value 𝐼𝐼𝐼𝐼0 and the treatment is 
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constant when the number of infective 
crosses the fixed value 𝐼𝐼𝐼𝐼0 . In the next 
section, the stability of the model taking 
two different cases of treatment function is 
discussed. 

Case I: SIR model with 𝟎𝟎𝟎𝟎 ≤ 𝑰𝑰𝑰𝑰 ≤ 𝑰𝑰𝑰𝑰𝟎𝟎𝟎𝟎 

 3. Equilibrium States and their 
Stability: 

    When 𝑇𝑇𝑇𝑇(𝐼𝐼𝐼𝐼) = 𝑟𝑟𝑟𝑟𝐼𝐼𝐼𝐼 ,the model reduces to  

 
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑎𝑎 − 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆 −
𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆

1 + 𝛼𝛼𝛼𝛼𝐼𝐼𝐼𝐼2 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 + 𝜇𝜇𝜇𝜇  (5)     

 
𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆

1 + 𝛼𝛼𝛼𝛼𝐼𝐼𝐼𝐼2 − (𝑑𝑑𝑑𝑑 + 𝑚𝑚𝑚𝑚 + 𝑟𝑟𝑟𝑟)𝐼𝐼𝐼𝐼          (6) 

 
𝑑𝑑𝑑𝑑𝛽𝛽𝛽𝛽
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝑚𝑚𝑚𝑚 + 𝑟𝑟𝑟𝑟)𝐼𝐼𝐼𝐼 − (𝑑𝑑𝑑𝑑 + 𝛽𝛽𝛽𝛽)𝛽𝛽𝛽𝛽              (7)  

The System of equation (5)-(7) always has 

the disease free equilibrium 𝐸𝐸𝐸𝐸0 �
𝑎𝑎𝑎𝑎+𝜇𝜇𝜇𝜇
𝑑𝑑𝑑𝑑

, 0,0� 
for any set of parameter values. For the 
endemic equilibrium 𝐸𝐸𝐸𝐸∗(𝑆𝑆𝑆𝑆∗, 𝐼𝐼𝐼𝐼∗,𝛽𝛽𝛽𝛽∗) is the 
solution of 

  𝑎𝑎𝑎𝑎 − 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆 − 𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆
1+𝛼𝛼𝛼𝛼𝐼𝐼𝐼𝐼2 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 + 𝜇𝜇𝜇𝜇 = 0 

 
𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆

1 + 𝛼𝛼𝛼𝛼𝐼𝐼𝐼𝐼2 − (𝑑𝑑𝑑𝑑 + 𝑚𝑚𝑚𝑚 + 𝑟𝑟𝑟𝑟)𝐼𝐼𝐼𝐼 = 0 

 (𝑚𝑚𝑚𝑚 + 𝑟𝑟𝑟𝑟)𝐼𝐼𝐼𝐼 − (𝑑𝑑𝑑𝑑 + 𝛽𝛽𝛽𝛽)𝛽𝛽𝛽𝛽 = 0 

We define the basic reproductive number 
as follows 

     𝛽𝛽𝛽𝛽0 =
𝜆𝜆𝜆𝜆(𝑎𝑎𝑎𝑎 + 𝜇𝜇𝜇𝜇)

𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑 + 𝑚𝑚𝑚𝑚 + 𝑟𝑟𝑟𝑟)
                         (8) 

Lemma 3.1: 

𝑆𝑆𝑆𝑆(𝑑𝑑𝑑𝑑) + 𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑) + 𝛽𝛽𝛽𝛽(𝑑𝑑𝑑𝑑) = 𝑎𝑎𝑎𝑎+𝜇𝜇𝜇𝜇
𝑑𝑑𝑑𝑑

  is an invariant 
manifold of the system attracting the first 
octant. 

 

Proof:  
Let 𝑁𝑁𝑁𝑁(𝑑𝑑𝑑𝑑) = 𝑆𝑆𝑆𝑆(𝑑𝑑𝑑𝑑) + 𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑) + 𝛽𝛽𝛽𝛽(𝑑𝑑𝑑𝑑) then 
𝑑𝑑𝑑𝑑𝑁𝑁𝑁𝑁
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝑎𝑎𝑎𝑎 + 𝜇𝜇𝜇𝜇) − 𝑑𝑑𝑑𝑑 𝑁𝑁𝑁𝑁(𝑑𝑑𝑑𝑑)  

This imply 𝑁𝑁𝑁𝑁(𝑑𝑑𝑑𝑑) = 𝐴𝐴𝐴𝐴1𝑒𝑒𝑒𝑒−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + (𝑎𝑎𝑎𝑎+𝜇𝜇𝜇𝜇)
𝑑𝑑𝑑𝑑

 

Simple mathematical calculation shows 
that 𝑁𝑁𝑁𝑁(𝑑𝑑𝑑𝑑) tends to (𝑎𝑎𝑎𝑎+𝜇𝜇𝜇𝜇)

𝑑𝑑𝑑𝑑
 as t tends to 

infinity. 

 We rescale the system by 

𝑥𝑥𝑥𝑥 = 𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼
𝑑𝑑𝑑𝑑+𝛽𝛽𝛽𝛽

 ,𝑦𝑦𝑦𝑦 = 𝜆𝜆𝜆𝜆𝛽𝛽𝛽𝛽
𝑑𝑑𝑑𝑑+𝛽𝛽𝛽𝛽

 ,𝑇𝑇𝑇𝑇 = (𝑑𝑑𝑑𝑑 + 𝛽𝛽𝛽𝛽)𝑑𝑑𝑑𝑑   

and obtain  

  𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑𝑇𝑇𝑇𝑇

= 𝑥𝑥𝑥𝑥(𝐾𝐾𝐾𝐾−𝑥𝑥𝑥𝑥−𝑦𝑦𝑦𝑦)
1−𝑣𝑣𝑣𝑣𝑥𝑥𝑥𝑥2 − 𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥                       (12)  

  𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑤𝑤𝑤𝑤𝑥𝑥𝑥𝑥 − 𝑦𝑦𝑦𝑦                                   ( 13) 

  Where  

 𝑘𝑘𝑘𝑘 = (𝑎𝑎𝑎𝑎+𝜇𝜇𝜇𝜇 )𝜆𝜆𝜆𝜆
𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑+𝛽𝛽𝛽𝛽)

  ,𝑢𝑢𝑢𝑢 = 𝑑𝑑𝑑𝑑+𝑚𝑚𝑚𝑚+𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑+𝛽𝛽𝛽𝛽

 ,  

v = 𝛼𝛼𝛼𝛼(𝑑𝑑𝑑𝑑+𝛽𝛽𝛽𝛽)2

𝜆𝜆𝜆𝜆2  ,𝑤𝑤𝑤𝑤 = 𝑚𝑚𝑚𝑚+𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑+𝛽𝛽𝛽𝛽

  

Theorem 3.2: 

(i) When the basic reproductive 
number 𝛽𝛽𝛽𝛽0 ≤ 1, there exist no 
positive equilibrium of the 
system (12)-(13) and in that 
case the only disease free 
equilibrium (0, 0) is a stable 
node. 

(ii)  When 𝛽𝛽𝛽𝛽0 > 1, there exists a 
unique positive equilibrium of 
the system (12) - (13), and in 
that case (0, 0) is an unstable 
saddle point. Also the condition 
for which the unique positive 
equilibrium will be locally 

stable is 𝑥𝑥𝑥𝑥∗ < 𝑃𝑃𝑃𝑃4
𝑃𝑃𝑃𝑃3
� . 
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Global Stability: To investigate the global 
stability of the disease free equilibrium it 
is sufficient to show that ( I(t), R(t)) (0, 0). 
From here, it is clear that 𝑆𝑆𝑆𝑆(𝑑𝑑𝑑𝑑) →
(𝑎𝑎𝑎𝑎 + 𝜇𝜇𝜇𝜇)

𝑑𝑑𝑑𝑑� .  

Theorem 3.3:  

If 𝛽𝛽𝛽𝛽0 < 1, then the disease free 

equilibrium 𝐸𝐸𝐸𝐸0 �
𝑎𝑎𝑎𝑎+𝜇𝜇𝜇𝜇
𝑑𝑑𝑑𝑑

, 0,0� of the system 

(10)-(11) is globally stable. But when  
 𝛽𝛽𝛽𝛽0 > 1  , system (10)-(11) have unique 
positive equilibrium and further when 
𝑥𝑥𝑥𝑥∗ < 𝑃𝑃𝑃𝑃4 𝑃𝑃𝑃𝑃3 ⁄ that unique positive 
equilibrium must be locally stable. Again 
since the system have no limit cycle in the 
positive quadrant, 𝐸𝐸𝐸𝐸∗(𝑥𝑥𝑥𝑥∗,𝑦𝑦𝑦𝑦∗) must be 
globally stable under the condition 
 𝛽𝛽𝛽𝛽0 > 1  and 𝑥𝑥𝑥𝑥∗ < 𝑃𝑃𝑃𝑃4 𝑃𝑃𝑃𝑃3 ⁄ . 

 

Case II: SIR model with 𝑰𝑰𝑰𝑰 > 𝑰𝑰𝑰𝑰𝟎𝟎𝟎𝟎 

4. Equilibrium States and their 
Stability: 

    In this case the model reduces to: 

          

  
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑎𝑎 − 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆 −
𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆

1 + 𝛼𝛼𝛼𝛼𝐼𝐼𝐼𝐼2 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 + 𝜇𝜇𝜇𝜇  (20)  

  
𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆

1 + 𝛼𝛼𝛼𝛼𝐼𝐼𝐼𝐼2 − (𝑑𝑑𝑑𝑑 + 𝑚𝑚𝑚𝑚)𝐼𝐼𝐼𝐼 − 𝐾𝐾𝐾𝐾1       (21) 

  
𝑑𝑑𝑑𝑑𝛽𝛽𝛽𝛽
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 − (𝑑𝑑𝑑𝑑 + 𝛽𝛽𝛽𝛽)𝛽𝛽𝛽𝛽 + 𝐾𝐾𝐾𝐾1             (22)  

 

Since 𝑆𝑆𝑆𝑆 + 𝐼𝐼𝐼𝐼 + 𝛽𝛽𝛽𝛽 = 𝑎𝑎𝑎𝑎+𝜇𝜇𝜇𝜇
𝑑𝑑𝑑𝑑

 is invariant 
manifold of the system (20)-(22), the 
model reduce to 

𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼�𝑎𝑎𝑎𝑎+𝜇𝜇𝜇𝜇

𝑑𝑑𝑑𝑑 −𝐼𝐼𝐼𝐼−𝛽𝛽𝛽𝛽�

1+𝛼𝛼𝛼𝛼𝐼𝐼𝐼𝐼2 − (𝑑𝑑𝑑𝑑 + 𝑚𝑚𝑚𝑚)𝐼𝐼𝐼𝐼 − 𝐾𝐾𝐾𝐾1 (23)                                                                                
𝑑𝑑𝑑𝑑𝛽𝛽𝛽𝛽
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 − (𝑑𝑑𝑑𝑑 + 𝛽𝛽𝛽𝛽)𝛽𝛽𝛽𝛽 + 𝐾𝐾𝐾𝐾1               (24)                                                                                            

Theorem 4.1: 

 When 𝐾𝐾𝐾𝐾 > 𝑢𝑢𝑢𝑢1 + 𝑐𝑐𝑐𝑐, the system (25)-(26) 
has two positive equilibrium (𝑥𝑥𝑥𝑥1���, 𝑦𝑦𝑦𝑦1���) and 
(𝑥𝑥𝑥𝑥2���,𝑦𝑦𝑦𝑦2���), where 𝑥𝑥𝑥𝑥1���, 𝑥𝑥𝑥𝑥2��� are two positive 
solutions of the equation (27) under the 
parametric restriction given by (29), 
moreover when the conditions (32) and 
(34) are satisfied at some equilibrium 
point, that equilibrium point must be 
asymptotically stable. 

           

Numerical Solution:   

Case I: 𝟎𝟎𝟎𝟎 ≤ 𝑰𝑰𝑰𝑰 ≤ 𝑰𝑰𝑰𝑰𝟎𝟎𝟎𝟎, we choose the 
parameters as follows: 

𝑎𝑎𝑎𝑎 = 3,𝑑𝑑𝑑𝑑 = 0.1,𝛼𝛼𝛼𝛼 = 0.5, 𝜆𝜆𝜆𝜆 = 0.3, 𝜇𝜇𝜇𝜇 =
0.1,𝑚𝑚𝑚𝑚 = 0.01, 𝑟𝑟𝑟𝑟 = 0.2,𝛽𝛽𝛽𝛽 = 0.1 . 

Here the basic reproductive number 
𝛽𝛽𝛽𝛽0 = 30 > 1 . For the above choice of 
parameters we see that all the three 
components 𝑆𝑆𝑆𝑆(𝑑𝑑𝑑𝑑), 𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑),𝛽𝛽𝛽𝛽(𝑑𝑑𝑑𝑑) approach to 
their steady state values as time goes to 
infinity, the disease becomes endemic. 

Again if we take = 15,𝑑𝑑𝑑𝑑 = 2.5, 𝜆𝜆𝜆𝜆 =
0.5,𝛼𝛼𝛼𝛼 = 1, 𝜇𝜇𝜇𝜇 = 0.3,𝛽𝛽𝛽𝛽 = 0.5,𝑚𝑚𝑚𝑚 =
10 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟 = 0.1 , the value of the basic 
reproductive number becomes 
0.2428571<1. 

By rescaling, the system (12) & (13) 
reduces to  

 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑𝑇𝑇𝑇𝑇

=
𝑥𝑥𝑥𝑥(46.5 − 𝑥𝑥𝑥𝑥 − 𝑦𝑦𝑦𝑦)

1 + 0.2222𝑥𝑥𝑥𝑥2 − 1.55𝑥𝑥𝑥𝑥 , 

 
𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
𝑑𝑑𝑑𝑑𝑇𝑇𝑇𝑇

= 1.05 − 𝑦𝑦𝑦𝑦 
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Global Stability: To investigate the global 
stability of the disease free equilibrium it 
is sufficient to show that ( I(t), R(t)) (0, 0). 
From here, it is clear that 𝑆𝑆𝑆𝑆(𝑑𝑑𝑑𝑑) →
(𝑎𝑎𝑎𝑎 + 𝜇𝜇𝜇𝜇)

𝑑𝑑𝑑𝑑� .  

Theorem 3.3:  

If 𝛽𝛽𝛽𝛽0 < 1, then the disease free 

equilibrium 𝐸𝐸𝐸𝐸0 �
𝑎𝑎𝑎𝑎+𝜇𝜇𝜇𝜇
𝑑𝑑𝑑𝑑

, 0,0� of the system 

(10)-(11) is globally stable. But when  
 𝛽𝛽𝛽𝛽0 > 1  , system (10)-(11) have unique 
positive equilibrium and further when 
𝑥𝑥𝑥𝑥∗ < 𝑃𝑃𝑃𝑃4 𝑃𝑃𝑃𝑃3 ⁄ that unique positive 
equilibrium must be locally stable. Again 
since the system have no limit cycle in the 
positive quadrant, 𝐸𝐸𝐸𝐸∗(𝑥𝑥𝑥𝑥∗,𝑦𝑦𝑦𝑦∗) must be 
globally stable under the condition 
 𝛽𝛽𝛽𝛽0 > 1  and 𝑥𝑥𝑥𝑥∗ < 𝑃𝑃𝑃𝑃4 𝑃𝑃𝑃𝑃3 ⁄ . 

 

Case II: SIR model with 𝑰𝑰𝑰𝑰 > 𝑰𝑰𝑰𝑰𝟎𝟎𝟎𝟎 

4. Equilibrium States and their 
Stability: 

    In this case the model reduces to: 

          

  
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑎𝑎 − 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆 −
𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆

1 + 𝛼𝛼𝛼𝛼𝐼𝐼𝐼𝐼2 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 + 𝜇𝜇𝜇𝜇  (20)  

  
𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆

1 + 𝛼𝛼𝛼𝛼𝐼𝐼𝐼𝐼2 − (𝑑𝑑𝑑𝑑 + 𝑚𝑚𝑚𝑚)𝐼𝐼𝐼𝐼 − 𝐾𝐾𝐾𝐾1       (21) 

  
𝑑𝑑𝑑𝑑𝛽𝛽𝛽𝛽
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 − (𝑑𝑑𝑑𝑑 + 𝛽𝛽𝛽𝛽)𝛽𝛽𝛽𝛽 + 𝐾𝐾𝐾𝐾1             (22)  

 

Since 𝑆𝑆𝑆𝑆 + 𝐼𝐼𝐼𝐼 + 𝛽𝛽𝛽𝛽 = 𝑎𝑎𝑎𝑎+𝜇𝜇𝜇𝜇
𝑑𝑑𝑑𝑑

 is invariant 
manifold of the system (20)-(22), the 
model reduce to 

𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼�𝑎𝑎𝑎𝑎+𝜇𝜇𝜇𝜇

𝑑𝑑𝑑𝑑 −𝐼𝐼𝐼𝐼−𝛽𝛽𝛽𝛽�

1+𝛼𝛼𝛼𝛼𝐼𝐼𝐼𝐼2 − (𝑑𝑑𝑑𝑑 + 𝑚𝑚𝑚𝑚)𝐼𝐼𝐼𝐼 − 𝐾𝐾𝐾𝐾1 (23)                                                                                
𝑑𝑑𝑑𝑑𝛽𝛽𝛽𝛽
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 − (𝑑𝑑𝑑𝑑 + 𝛽𝛽𝛽𝛽)𝛽𝛽𝛽𝛽 + 𝐾𝐾𝐾𝐾1               (24)                                                                                            

Theorem 4.1: 

 When 𝐾𝐾𝐾𝐾 > 𝑢𝑢𝑢𝑢1 + 𝑐𝑐𝑐𝑐, the system (25)-(26) 
has two positive equilibrium (𝑥𝑥𝑥𝑥1���, 𝑦𝑦𝑦𝑦1���) and 
(𝑥𝑥𝑥𝑥2���,𝑦𝑦𝑦𝑦2���), where 𝑥𝑥𝑥𝑥1���, 𝑥𝑥𝑥𝑥2��� are two positive 
solutions of the equation (27) under the 
parametric restriction given by (29), 
moreover when the conditions (32) and 
(34) are satisfied at some equilibrium 
point, that equilibrium point must be 
asymptotically stable. 

           

Numerical Solution:   

Case I: 𝟎𝟎𝟎𝟎 ≤ 𝑰𝑰𝑰𝑰 ≤ 𝑰𝑰𝑰𝑰𝟎𝟎𝟎𝟎, we choose the 
parameters as follows: 

𝑎𝑎𝑎𝑎 = 3,𝑑𝑑𝑑𝑑 = 0.1,𝛼𝛼𝛼𝛼 = 0.5, 𝜆𝜆𝜆𝜆 = 0.3, 𝜇𝜇𝜇𝜇 =
0.1,𝑚𝑚𝑚𝑚 = 0.01, 𝑟𝑟𝑟𝑟 = 0.2,𝛽𝛽𝛽𝛽 = 0.1 . 

Here the basic reproductive number 
𝛽𝛽𝛽𝛽0 = 30 > 1 . For the above choice of 
parameters we see that all the three 
components 𝑆𝑆𝑆𝑆(𝑑𝑑𝑑𝑑), 𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑),𝛽𝛽𝛽𝛽(𝑑𝑑𝑑𝑑) approach to 
their steady state values as time goes to 
infinity, the disease becomes endemic. 

Again if we take = 15,𝑑𝑑𝑑𝑑 = 2.5, 𝜆𝜆𝜆𝜆 =
0.5,𝛼𝛼𝛼𝛼 = 1, 𝜇𝜇𝜇𝜇 = 0.3,𝛽𝛽𝛽𝛽 = 0.5,𝑚𝑚𝑚𝑚 =
10 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟 = 0.1 , the value of the basic 
reproductive number becomes 
0.2428571<1. 

By rescaling, the system (12) & (13) 
reduces to  

 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑𝑇𝑇𝑇𝑇

=
𝑥𝑥𝑥𝑥(46.5 − 𝑥𝑥𝑥𝑥 − 𝑦𝑦𝑦𝑦)

1 + 0.2222𝑥𝑥𝑥𝑥2 − 1.55𝑥𝑥𝑥𝑥 , 

 
𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
𝑑𝑑𝑑𝑑𝑇𝑇𝑇𝑇

= 1.05 − 𝑦𝑦𝑦𝑦 

Here (𝑢𝑢𝑢𝑢 − 𝑘𝑘𝑘𝑘) < 1 , and hence there exists 
unique positive equilibrium point (𝑥𝑥𝑥𝑥∗,𝑦𝑦𝑦𝑦∗) 
where 

 𝑥𝑥𝑥𝑥∗ = 9.075827 and  𝑦𝑦𝑦𝑦∗ = 8.643645 . 

For the above choice of parameters 
𝑃𝑃𝑃𝑃3 = 9.162602 >  0 ,𝑃𝑃𝑃𝑃4 = 196.5196, 

𝑃𝑃𝑃𝑃4 𝑃𝑃𝑃𝑃3⁄ = 21.44801 

and therefore the sufficient condition for 
local stability satisfied. 

 

Case II: 𝑰𝑰𝑰𝑰 > 𝑰𝑰𝑰𝑰𝟎𝟎𝟎𝟎, the parameters are: 

𝑎𝑎𝑎𝑎 = 2.8,𝑑𝑑𝑑𝑑 = 0.0453,𝛼𝛼𝛼𝛼 = 2, 𝜆𝜆𝜆𝜆 = 0.4, 

𝜇𝜇𝜇𝜇 = 0.1,𝑚𝑚𝑚𝑚 = 0.01,𝑘𝑘𝑘𝑘1 = 0.7,𝛽𝛽𝛽𝛽 = 0.13 

In this case 𝑆𝑆𝑆𝑆 + 𝐼𝐼𝐼𝐼 + 𝛽𝛽𝛽𝛽 = 𝑎𝑎𝑎𝑎+𝜇𝜇𝜇𝜇
𝑑𝑑𝑑𝑑

= 64.01766  
is invariant manifold. The system reduces 
to 

𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
0.4𝐼𝐼𝐼𝐼(64.01766 − 𝐼𝐼𝐼𝐼 − 𝛽𝛽𝛽𝛽)

1 + 2𝐼𝐼𝐼𝐼2 − (0.0553)𝐼𝐼𝐼𝐼 − 0.7 

 
𝑑𝑑𝑑𝑑𝛽𝛽𝛽𝛽
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (0.01)𝐼𝐼𝐼𝐼 − (0.1753)𝛽𝛽𝛽𝛽 + 0.7 

 

 

 

 

 

 

 

 

 

 

The rescaling system reduces to  

𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑𝑇𝑇𝑇𝑇

=
𝑥𝑥𝑥𝑥(143.32019 − 𝑥𝑥𝑥𝑥 − 𝑦𝑦𝑦𝑦)

1 + (0.3841263)𝑥𝑥𝑥𝑥2 − (0.3154592)𝑥𝑥𝑥𝑥

− 9.111591 

 
𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
𝑑𝑑𝑑𝑑𝑇𝑇𝑇𝑇

= (0.5704507)𝑥𝑥𝑥𝑥 − 𝑦𝑦𝑦𝑦 + 9.111591 

Here (𝑢𝑢𝑢𝑢 − 𝐾𝐾𝐾𝐾) < 0 and hence there exists 
unique positive equilibrium point(𝑥𝑥𝑥𝑥∗,𝑦𝑦𝑦𝑦∗). 
For the choice of parameters  

𝑃𝑃𝑃𝑃3 = 392.8589 > 0,𝑃𝑃𝑃𝑃4 = 3651.5791, 

𝑃𝑃𝑃𝑃4
𝑃𝑃𝑃𝑃3
� = 9.2949   and therefore the 

sufficient condition for local stability 
satisfied. 

5. Conclusion: 

In this paper we see that the basic 
reproductive number plays an important 
role to control the disease. When 𝛽𝛽𝛽𝛽0 ≤ 1, 
there exists no positive equilibrium, and in 
that case the disease free equilibrium is 
globally stable, that is the disease dies out. 
But when 𝛽𝛽𝛽𝛽0 > 1, the unique endemic 
equilibrium is globally stable under some 
parametric condition. Also we see that the 
treatment rate plays a major role to control 
the disease. 
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