Dr. K. RADHA

Mr. S. ARUMUGAM
B.T. ASSISTANT (MATHEMATICS), Government High School, Thinnanur, Tiruchirapalli-621006., Tamilnadu, India.

ABSTRACT

In this paper, regular properties of the strong product of two fuzzy graphs are studied. It is illustrated that when two fuzzy graphs are regular then their strong product need not be a regular fuzzy graph.
With some restrictions it is proved that the strong product of two regular fuzzy graphs is regular and it is proved that the strong product of two full regular fuzzy graphs is full regular.

KEYWORDS : Fuzzy Graph, Strong Product, Regular Fuzzy Graph and Full Regular Fuzzy Graph.

I. INTRODUCTION

Fuzzy graph theory was introduced by Azriel Rosenfeld[9] in 1975. Later on, Bhattacharya[1] gave some remarks on fuzzy graphs. Some operations on fuzzy graphs were introduced by Mordeson.J.N. and Peng.C.S.[4]. We defined the direct sum of two fuzzy graphs and studied the properties of that operation[6]. Also we defined the strong product of two fuzzy graphs and studied some of its properties[8].

In this paper we study the regular properties of the strong product of two fuzzy graphs. We illustrate that the strong product of two regular fuzzy graphs need not be regular. Then we provide the conditions under which the strong product of two regular fuzzy graphs is regular as well as full regular.

II. PRELIMINARIES

First let us recall some preliminary definitions and results that can be found in [1]-[9].

A fuzzy graph G is a pair of functions (σ, μ) where σ is a fuzzy subset of a no nemp y set V an $d \mu$ is a symmetric fuzzy relation on σ. The underlying crisp graph of $G:(\sigma, \mu)$ is denoted by $G^{*}(V, E)$ where $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$.

The degree of a vertex u is defined as $d_{G}(u)=\sum_{u \neq v} \mu(u v)=\sum_{u v \in E} \mu(u v)$.

If $d_{G}(v)=k$ for all $v \in V, G$ is said to be a regular fuzzy graph of degree ' k ' or a k regular fuzzy graph.

The regular fuzzy graph $G:(\sigma, \mu)$ is called a full regular fuzzy graph if its underlying crisp graph G^{*} is a regular graph and a complete regular fuzzy graph if its underlying crisp graph G^{*} is a complete graph.

If $G_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and $G_{2}:\left(\sigma_{2}, \mu_{2}\right)$ are two fuzzy graphs such that $\sigma_{1} \leq \mu_{2}$ then $\sigma_{2} \geq \mu_{1}$.

Let $G_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and $G_{2}:\left(\sigma_{2}, \mu_{2}\right)$ denote two fuzzy graphs with underlying crisp graphs $\mathrm{G}_{1} *:\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2} *:\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ respectively. The normal product of $\mathrm{G}_{1} *$ and $\mathrm{G}_{2} *$ is $\quad \mathrm{G}^{*}=\mathrm{G}_{1} * \circ \mathrm{G}_{2}{ }^{*}:(\mathrm{V}, \mathrm{E})$ where $\mathrm{V}=\mathrm{V}_{1} \times \mathrm{V}_{2}$ and $\mathrm{E}=\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right) / \mathrm{u}_{1}=\mathrm{u}_{2}, \mathrm{v}_{1} \mathrm{v}_{2} \in \mathrm{E}_{2} \quad\right.$ or $\quad \mathrm{v}_{1}=\mathrm{v}_{2}$, $u_{1} u_{2} \in E_{1}$ or $u_{1} u_{2} \in E_{1}$ and $\left.v_{1} v_{2} \in E_{2}\right\}$.

The fuzzy graph $\mathrm{G}:(\sigma, \mu)$, where, $\sigma\left(u_{1}, v_{1}\right)=\sigma_{1}\left(u_{1}\right) \wedge \sigma_{2}\left(v_{1}\right), \quad$ for all $\left(u_{1}, v_{1}\right) \in V_{1} \times V_{2}$ and
$\mu\left(\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\right)$
$= \begin{cases}\sigma_{1}\left(u_{1}\right) \wedge \mu_{2}\left(v_{1} v_{2}\right) & , \text { if } u_{1}=u_{2}, v_{1} v_{2} \in E_{2} \\ \sigma_{2}\left(v_{1}\right) \wedge \mu_{1}\left(u_{1} u_{2}\right) & , \text { if } v_{1}=v_{2}, u_{1} u_{2} \in E_{1} \\ \mu_{1}\left(u_{1} u_{2}\right) \wedge \mu_{2}\left(v_{1} v_{2}\right), & \text { if } u_{1} u_{2} \in E_{1}, v_{1} v_{2} \in E_{2}\end{cases}$
is called the strong product of G_{1} and G_{2} and denoted by $\mathrm{G}_{1} \circ \mathrm{G}_{2}$.

The following results give degree of a vertex in $\mathrm{G}_{1} \circ \mathrm{G}_{2}$ with some restrictions.

If $\sigma_{1} \geq \mu_{2}$ and $\sigma_{2} \geq \mu_{1}$ and $\mu_{1} \wedge \mu_{2}=c$, then
$\mathrm{d}_{\mathrm{G}_{1} \circ \mathrm{G}_{2}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$
$=d_{G_{2}}\left(v_{j}\right)+d_{G_{1}}\left(u_{i}\right)+\left[d_{G_{1}^{*}}\left(u_{i}\right) d_{G_{2}^{* *}}\left(v_{j}\right)\right] c$ \qquad

If $\sigma_{1} \geq \mu_{2}$ and $\sigma_{2} \geq \mu_{1}$ and $\mu_{1} \vee \mu_{2}=C$,
then
$d_{\mathrm{G}_{1} \circ \mathrm{G}_{2}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=\left[1+\mathrm{d}_{\mathrm{G}_{2}^{*}}\left(\mathrm{v}_{\mathrm{j}}\right)\right] \mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)$
$+\left[1+\mathrm{d}_{\mathrm{G}_{1}^{*}}\left(\mathrm{u}_{\mathrm{i}}\right)\right] \mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{\mathrm{j}}\right)-\left[\mathrm{d}_{\mathrm{G}_{1}^{*}}\left(\mathrm{u}_{\mathrm{i}}\right) \mathrm{d}_{\mathrm{G}_{2}^{*}}\left(\mathrm{v}_{\mathrm{j}}\right)\right] \mathrm{C}$.
If $\sigma_{1} \leq \mu_{2}$ and $\mu_{1} \wedge \mu_{2}=c$, then
$\mathrm{d}_{\mathrm{G}_{1} \circ \mathrm{G}_{2}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$
$=\mathrm{d}_{\mathrm{G}_{2}^{*}}\left(\mathrm{v}_{\mathrm{j}}\right) \sigma_{1}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)+\left[\mathrm{d}_{\mathrm{G}_{1}^{*}}\left(\mathrm{u}_{\mathrm{i}}\right) \mathrm{d}_{\mathrm{G}_{2}^{*}}\left(\mathrm{v}_{\mathrm{j}}\right)\right] \mathrm{c}$.

III. REGULAR PROPERTIES

If $G_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and $G_{2}:\left(\sigma_{2}, \mu_{2}\right)$ are two regular fuzzy graphs then their strong product $G_{1} \circ G_{2}:(\sigma, \mu)$ need not be a regular
fuzzy graph. It is illustrated through the following example.

Example 3.1:

Figure-1
But with few restrictions it can be proved that the strong product of two regular fuzzy graphs is regular.

Theorem 3.2:

If $\mathrm{G}_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and $\mathrm{G}_{2}:\left(\sigma_{2}, \mu_{2}\right)$ are two fuzzy graphs such that $\sigma_{1} \geq \mu_{2}, \sigma_{2} \geq \mu_{1}$ and $\mu_{1} \wedge \mu_{2}=\mathrm{c}$ with $\mathrm{G}_{1} *:\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2} *:\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ are r-regular graphs then $G_{1} \circ G_{2}:(\sigma, \mu)$ is regular if and only if $\mathrm{G}_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and $\mathrm{G}_{2}:\left(\sigma_{2}, \mu_{2}\right)$ are regular.

Proof:

Let $\sigma_{1} \geq \mu_{2}$ and $\sigma_{2} \geq \mu_{1}$ and $\mu_{1} \wedge \mu_{2}=c$ (a constant) and $\mathrm{G}_{1} *:\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2} *:\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$
be r -regular. Then for any vertex $\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$ in $\mathrm{G}_{1} \circ \mathrm{G}_{2}:(\sigma, \mu)$,

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{G}_{1} \mathrm{G}_{2}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \\
& =\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{\mathrm{j}}\right)+\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)+\left[\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right) \mathrm{d}_{\mathrm{G}_{2}^{*}}\left(\mathrm{v}_{\mathrm{j}}\right)\right] \mathrm{c} \\
& =\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{\mathrm{j}}\right)+\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{r}^{2} \mathrm{c}
\end{aligned}
$$

Now assume that G_{1} and G_{2} are regular fuzzy graphs of degrees k_{1} and k_{2} respectively. Then,

$$
\mathrm{d}_{\mathrm{G}_{1} \mathrm{oG}_{2}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j})}\right)=\mathrm{k}_{1}+\mathrm{k}_{2}+\mathrm{r}^{2} \mathrm{c} .
$$

This is a constant since $\mathrm{k}_{1}, \mathrm{k}_{2}$, r and c are all constants. Hence the strong product $\mathrm{G}_{1} \circ \mathrm{G}_{2}:(\sigma, \mu)$ is regular.
Conversely assume that the strong product $\mathrm{G}_{1} \circ \mathrm{G}_{2}:(\sigma, \mu)$ is regular.
Then for any two vertices $\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)$ and $\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)$ in $V_{1} \times V_{2}$,
$\mathrm{d}_{\mathrm{G}_{1} \mathrm{GG}_{2}}\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)=\mathrm{d}_{\mathrm{G}_{1} \mathrm{o} \mathrm{G}_{2}}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)$
$\Rightarrow \mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{1}\right)+\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{1}\right)+\mathrm{r}^{2} \mathrm{c}$
$=\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{2}\right)+\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{2}\right)+\mathrm{r}^{2} \mathrm{c}$
$\Rightarrow \mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{1}\right)+\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{1}\right)$
$=d_{G_{2}}\left(v_{2}\right)+d_{\mathrm{G}_{1}}\left(\mathrm{u}_{2}\right) \ldots$.
Fix $\mathrm{v} \in \mathrm{V}_{2}$ and consider ($\mathrm{u}_{1}, \mathrm{v}$) and $\left(\mathrm{u}_{2}, \mathrm{v}\right)$ in $\mathrm{V}_{1} \times \mathrm{V}_{2}$ where $\mathrm{u}_{1}, \mathrm{u}_{2} \in \mathrm{~V}_{1}$ are arbitrary.
From (2.1), $\mathrm{d}_{\mathrm{G}_{2}}(\mathrm{v})+\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{1}\right)$

$$
=\mathrm{d}_{\mathrm{G}_{2}}(\mathrm{v})+\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{2}\right)
$$

$\Rightarrow \mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{1}\right)=\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{2}\right)$.
This is true for all $u_{1}, u_{2} \in V_{1}$. Thus G_{1} is regular.
Now fix $u \in V_{1}$ and consider $\left(u, v_{1}\right)$ and $\left(u, v_{2}\right)$ in $\mathrm{V}_{1} \times \mathrm{V}_{2}$ where $\mathrm{v}_{1}, \mathrm{~V}_{2} \in \mathrm{~V}_{2}$ are arbitrary.
From (2.2), $\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{1}\right)+\mathrm{d}_{\mathrm{G}_{1}}(\mathrm{u})$

$$
\begin{aligned}
& =d_{\mathrm{G}_{2}}\left(\mathrm{v}_{2}\right)+\mathrm{d}_{\mathrm{G}_{1}}(\mathrm{u}) \\
\Rightarrow \mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{1}\right) & =\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{2}\right) .
\end{aligned}
$$

This is true for all $\mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{~V}_{2}$. Thus G_{2} is also regular.

Theorem 3.3:

If $\mathrm{G}_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and $\mathrm{G}_{2}:\left(\sigma_{2}, \mu_{2}\right)$ are two fuzzy graphs such that $\sigma_{1} \geq \mu_{2}$ and $\sigma_{2} \geq \mu_{1}$ and
$\mu_{1} \vee \mu_{2}=\mathrm{c}$ with $\mathrm{G}_{1} *$ and $\mathrm{G}_{2}{ }^{*}$ are r-regular, then the strong product $\mathrm{G}_{1} \circ \mathrm{G}_{2}:(\sigma, \mu)$ is regular if and only if $\mathrm{G}_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and $\mathrm{G}_{2}:\left(\sigma_{2}, \mu_{2}\right)$ are regular.

Proof:

Let $\mathrm{G}_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and $\mathrm{G}_{2}:\left(\sigma_{2}, \mu_{2}\right)$ be two fuzzy graphs such that $\sigma_{1} \geq \mu_{2}$ and $\sigma_{2} \geq \mu_{1}$ and $\mu_{1} \vee \mu_{2}=\mathrm{c}$ with $\mathrm{G}_{1}{ }^{*}$ and $\mathrm{G}_{2}{ }^{*}$ are r-regular.

Then for any vertex $\left(u_{i}, v_{j}\right)$ in $\mathrm{G}_{1} \circ \mathrm{G}_{2}:(\sigma, \mu)$,
$\mathrm{d}_{\mathrm{G}_{1} \mathrm{OG}_{2}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$
$=\left[1+\mathrm{d}_{\mathrm{G}_{2}^{*}}\left(\mathrm{v}_{\mathrm{j}}\right)\right] \mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)+\left[1+\mathrm{d}_{\mathrm{G}_{1}^{*}}\left(\mathrm{u}_{\mathrm{i}}\right)\right] \mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{\mathrm{j}}\right)$
$-\left[\mathrm{d}_{\mathrm{G}_{1}^{*}}\left(\mathrm{u}_{\mathrm{i}}\right) \mathrm{d}_{\mathrm{G}_{2}^{*}}\left(\mathrm{v}_{\mathrm{j}}\right)\right] \mathrm{c}$
$=[1+r] d_{G_{1}}\left(u_{i}\right)+[1+r] d_{\mathrm{G}_{2}}\left(\mathrm{v}_{\mathrm{j}}\right)-\mathrm{r}^{2} \mathrm{c}$
$=[1+\mathrm{r}]\left[\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{\mathrm{j}}\right)\right]-\mathrm{r}^{2} \mathrm{c} \ldots$.
Now assume that G_{1} and G_{2} are regular fuzzy graphs of degrees k_{1} and k_{2} respectively. Then,

$$
\mathrm{d}_{\mathrm{G}_{1} \mathrm{G}_{2}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=[1+\mathrm{r}]\left[\mathrm{k}_{1}+\mathrm{k}_{2}\right]-\mathrm{r}^{2} \mathrm{c} .
$$

This is a constant since k_{1}, k_{2}, r and c are all constants.

Hence the strong product $\mathrm{G}_{1} \circ \mathrm{G}_{2}:(\sigma, \mu)$ is regular.
Conversely assume that the strong product $\mathrm{G}_{1} \circ \mathrm{G}_{2}:(\sigma, \mu)$ is regular.

Then for any two vertices $\left(u_{1}, v_{1}\right)$ and $\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)$ in $\mathrm{V}_{1} \times \mathrm{V}_{2}$, $\mathrm{d}_{\mathrm{G}_{1} \mathrm{O}_{2}}\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)=\mathrm{d}_{\mathrm{G}_{1} \circ \mathrm{G}_{2}}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)$
From(2.2),

$$
\begin{align*}
& {[1+\mathrm{r}]\left[\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{1}\right)+\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{1}\right)\right]-\mathrm{r}^{2} \mathrm{c} } \\
& =[1+\mathrm{r}]\left[\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{2}\right)+\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{2}\right)\right]-\mathrm{r}^{2} \mathrm{c} \\
\Rightarrow \quad & {[1+\mathrm{r}]\left[\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{1}\right)+\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{1}\right)\right] } \\
& =[1+\mathrm{r}]\left[\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{2}\right)+\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{2}\right)\right] \\
\Rightarrow \quad & \mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{1}\right)+\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{1}\right) \\
& =\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{2}\right)+\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{2}\right) \quad \ldots \ldots . . \tag{2.3}
\end{align*}
$$

Fix $v \in V_{2}$ and consider $\left(u_{1}, v\right)$ and $\left(\mathrm{u}_{2}, \mathrm{v}\right)$ in $\mathrm{V}_{1} \times \mathrm{V}_{2}$ where $\mathrm{u}_{1}, \mathrm{u}_{2} \in \mathrm{~V}_{1}$ are arbitrary.

$$
\begin{gathered}
\mathrm{d}_{\mathrm{G}_{2}}(\mathrm{v})+\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{1}\right)=\mathrm{d}_{\mathrm{G}_{2}}(\mathrm{v})+\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{2}\right) \\
\Rightarrow \mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{1}\right)=\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{2}\right) .
\end{gathered}
$$

This is true for all $u_{1}, u_{2} \in V_{1}$. Thus G_{1} is regular.

Now fix $u \in V_{1}$ and consider $\left(u, v_{1}\right)$ and $\left(u, v_{2}\right)$ in $V_{1} \times V_{2}$ where $\mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{~V}_{2}$ are arbitrary. Then from(2.3)

$$
\begin{gathered}
\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{1}\right)+\mathrm{d}_{\mathrm{G}_{1}}(\mathrm{u})=\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{2}\right)+\mathrm{d}_{\mathrm{G}_{1}}(\mathrm{u}) \\
\Rightarrow \mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{1}\right)=\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{2}\right) .
\end{gathered}
$$

This is true for all $\mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{~V}_{2}$. Thus G_{2} is also a regular fuzzy graph.

Theorem 3.4:

If $\mathrm{G}_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and $\mathrm{G}_{2}:\left(\sigma_{2}, \mu_{2}\right)$ are two fuzzy graph such that $\sigma_{1} \leq \mu_{2}, \sigma_{1}$ is a constant and $\mu_{1} \wedge \mu_{2}=\mathrm{c}$ with $\mathrm{G}_{1}{ }^{*}$ and $\mathrm{G}_{2}{ }^{*}$ are r-regular, then the strong product $\mathrm{G}_{1} \circ \mathrm{G}_{2}:(\sigma, \mu)$ is regular if and only if $\mathrm{G}_{1}:\left(\sigma_{1}, \mu_{1}\right)$ is regular. Proof:

Let $\sigma_{1} \leq \mu_{2}, \sigma_{1}$ be a constant and $\mu_{1} \wedge \mu_{2}=\mathrm{c}$ with $\mathrm{G}_{1}{ }^{*}$ and $\mathrm{G}_{2}{ }^{*}$ are r-regular.
Then for any vertex $\left(u_{i}, v_{j}\right)$ in $\mathrm{G}_{1} \circ \mathrm{G}_{2}:(\sigma, \mu)$,

$$
\begin{align*}
& \mathrm{d}_{\mathrm{G}_{1} \mathrm{G}_{2}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \\
& =\mathrm{d}_{\mathrm{G}_{2}^{*}}\left(\mathrm{v}_{\mathrm{j}}\right) \sigma_{1}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)+\left[\mathrm{d}_{\mathrm{G}_{1}^{*}}\left(\mathrm{u}_{\mathrm{i}}\right) \mathrm{d}_{\mathrm{G}_{2}^{*}}\left(\mathrm{v}_{\mathrm{j}}\right)\right] \mathrm{c} \\
& =\mathrm{r}_{1}+\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{r}^{2} \mathrm{c} \\
& =\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{r}\left[\sigma_{1}+\mathrm{rc}\right] \quad \ldots \ldots \ldots \ldots . . \tag{2.4}
\end{align*}
$$

Now assume that $G_{1}:\left(\sigma_{1}, \mu_{1}\right)$ is a regular fuzzy graph of degree k_{1}.
Then the degree of any vertex $\left(u_{i}, v_{j}\right)$ in the strong product $\mathrm{G}_{1} \circ \mathrm{G}_{2}:(\sigma, \mu)$ is given by, $\mathrm{d}_{\mathrm{G}_{1} \mathrm{O}_{2}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=\mathrm{k}_{1}+\mathrm{r}\left[\sigma_{1}+\mathrm{rc}\right]$.

This is a constant since $\mathrm{k}_{1}, \sigma_{1}, \mathrm{r}$ and c are all constants.

Hence the strong product $\mathrm{G}_{1} \circ \mathrm{G}_{2}:(\sigma, \mu)$ is regular.
Conversely assume that the strong product $\mathrm{G}_{1} \circ \mathrm{G}_{2}:(\sigma, \mu)$ is regular.

Then for any two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ in $\mathrm{V}_{1} \times \mathrm{V}_{2}, \quad \mathrm{~d}_{\mathrm{G}_{1} \circ \mathrm{G}_{2}}\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)=\mathrm{d}_{\mathrm{G}_{1} \circ \mathrm{G}_{2}}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)$
$\Rightarrow \mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{1}\right)+\mathrm{r}\left[\sigma_{1}+\mathrm{rc}\right]=\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{2}\right)+\mathrm{r}\left[\sigma_{1}+\mathrm{rc}\right]$
$\Rightarrow \quad \mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{1}\right)=\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{2}\right)$
This is true for all $u_{1}, u_{2} \in V_{1}$. Thus G_{1} is regular.

IV. FULL REGULAR PROPERTIES

In this chapter we assume that $\mathrm{G}_{\mathrm{i}}{ }^{*}$ is r_{i}-regular for $\mathrm{i}=1,2$.

Theorem 4.1:

If $\mathrm{G}_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and $\mathrm{G}_{2}:\left(\sigma_{2}, \mu_{2}\right)$ are full regular fuzzy graphs with underlying crisp graphs $\mathrm{G}_{1} *:\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2} *:\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ respectively then the underlying crisp graph $\left(\mathrm{G}_{1} \circ \mathrm{G}_{2}\right)^{*}$ of their strong product is also regular.

Proof:

Since $G_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and $G_{2}:\left(\sigma_{2}, \mu_{2}\right)$ are full regular, $\mathrm{G}_{1}{ }^{*}$: $\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}{ }^{*}$: $\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ are regular. Now, the degree of any vertex in the strong product is given by,

$$
\begin{aligned}
\mathrm{d}_{\mathrm{G}_{1} \circ \mathrm{G}_{2}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)= & \sum_{\mathrm{u}_{\mathrm{i}}=\mathrm{u}_{\mathrm{k}}, \mathrm{v}_{\mathrm{j}} \mathrm{v}_{\ell} \in \mathrm{E}_{2}} \sigma_{1}\left(\mathrm{u}_{\mathrm{i}}\right) \wedge \mu_{2}\left(\mathrm{v}_{\mathrm{j}} \mathrm{v}_{\ell}\right)+ \\
& \sum_{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{k}} \in \mathrm{E}_{1}, \mathrm{v}_{\mathrm{j}}=\mathrm{v}_{\ell}} \mu_{1}\left(\mathrm{u}_{\mathrm{i}} u_{\mathrm{k}}\right) \wedge \sigma_{2}\left(\mathrm{v}_{\mathrm{j}}\right)+ \\
& \sum_{\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{k}} \in \mathrm{E}_{1}, \mathrm{v}_{\mathrm{j}} \mathrm{v}_{\ell} \in \mathrm{E}_{2}} \mu_{1}\left(\mathrm{u}_{\mathrm{i}} u_{\mathrm{k}}\right) \wedge \mu_{2}\left(\mathrm{v}_{\mathrm{j}} \mathrm{v}_{\ell}\right)
\end{aligned}
$$

This implies,

$$
\begin{aligned}
& \mathrm{d}_{\left(\mathrm{G}_{1} \mathrm{G}, \mathrm{G}_{2}\right)^{*}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \\
& \quad=\sum_{\mathrm{u}_{\mathrm{i}}=\mathrm{u}_{\mathrm{k}}, \mathrm{v}_{\mathrm{j}} \mathrm{v}_{\ell} \in \mathrm{E}_{2}} 1+\sum_{\mathrm{u}_{i} \mathrm{u}_{\mathrm{k}} \in \mathrm{E}_{1}, \mathrm{v}_{\mathrm{j}}=\mathrm{v}_{\ell}} 1+\sum_{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{k}} \in \mathrm{E}_{1}, \mathrm{v}_{\mathrm{j}} \mathrm{v}_{\ell} \in \mathrm{E}_{2}} 1 \\
& \left.=\mathrm{d}_{\mathrm{G}_{2}^{* *}} 1 \mathrm{v}_{\mathrm{j}}\right)+\mathrm{d}_{\mathrm{G}_{1}^{*}}\left(\mathrm{u}_{\mathrm{i}}\right)+\left[\mathrm{d}_{\mathrm{G}_{1}^{*}}\left(\mathrm{u}_{\mathrm{i}}\right) \mathrm{d}_{\mathrm{G}_{2}^{*}}\left(\mathrm{v}_{\mathrm{j}}\right)\right] \\
& \quad=\mathrm{r}_{2}+\mathrm{r}_{1}+\mathrm{r}_{1} \mathrm{r}_{2} .
\end{aligned}
$$

This is a constant and hence $\left(\mathrm{G}_{1} \circ \mathrm{G}_{2}\right)^{*}$ is a regular graph.

Theorem 4.2:

The strong product of two full regular fuzzy graphs $\mathrm{G}_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and
$\mathrm{G}_{2}:\left(\sigma_{2}, \mu_{2}\right)$ is full regular if $\mu_{1}=\mu_{2}=\mathrm{k}$, where ' k ' is a constant.

Proof:

Since $G_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and $G_{2}:\left(\sigma_{2}, \mu_{2}\right)$ are full regular, their underlying crisp graphs $\mathrm{G}_{1}{ }^{*}:\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}{ }^{*}:\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ are regular.

Then by Theorem4.1, $\left(\mathrm{G}_{1} \circ \mathrm{G}_{2}\right)^{*}$ is regular (n-regular (say)).

By the definition, $\left(\mu_{1} \circ \mu_{2}\right)$ $\left(\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\right)=k$ for all pairs of vertices in $\mathrm{G}_{1} \circ \mathrm{G}_{2}$, since $\mu_{1}=\mu_{2}=\mathrm{k}$.

Then, $\mathrm{d}_{\mathrm{Gl} \mathrm{\circ} \mathrm{G} 2}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=\mathrm{nk}$, where ' n ' is the degree of each vertex in $\left(\mathrm{G}_{1} \circ \mathrm{G}_{2}\right)^{*}$. Therefore $G_{1} \circ G_{2}$ is a full regular fuzzy graph.

Example 4.3:

Consider the full regular fuzzy graphs $\mathrm{G}_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and $\mathrm{G}_{2}:\left(\sigma_{2}, \mu_{2}\right)$ with $\mu_{1}=\mu_{2}=0.4$. Their strong product $G_{1} \circ G_{2}:(\sigma, \mu)$ is also full regular.

Figure-2

Remark 4.4:

The above theorem3.2 holds for complete regular fuzzy graphs also.

Theorem 4.5:

If $\mathrm{G}_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and $\mathrm{G}_{2}:\left(\sigma_{2}, \mu_{2}\right)$ are two full regular fuzzy graphs such that $\sigma_{1} \geq \mu_{2}$ and $\sigma_{2} \geq \mu_{1}$ and $\mu_{1} \wedge \mu_{2}=c$ (a constant), then their strong product $\mathrm{G}_{1} \circ \mathrm{G}_{2}:(\sigma, \mu)$ is also a full regular fuzzy graph.

Proof:

Let $\mathrm{G}_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and $\mathrm{G}_{2}:\left(\sigma_{2}, \mu_{2}\right)$ be two
full regular fuzzy graphs such that $\sigma_{1} \geq \mu_{2}$ and $\sigma_{2} \geq \mu_{1}$ and $\mu_{1} \wedge \mu_{2}=c$. Then,
$\mathrm{d}_{\mathrm{G}_{1} \mathrm{G}_{2}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$
$=d_{G_{2}}\left(v_{j}\right)+d_{G_{1}}\left(u_{i}\right)+\left[d_{G_{i}^{\prime}}\left(u_{i}\right) d_{G_{2}^{*}}\left(v_{j}\right)\right] c$.
Since $G_{1}:\left(\sigma_{1}, \mu_{1}\right)$ is a full regular fuzzy graph,
$\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{k}_{1}$ andd $_{\mathrm{G}_{\mathrm{i}}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{r}_{1} \forall \mathrm{u}_{\mathrm{i}} \in \mathrm{V}_{1}$.
Similarly since $\mathrm{G}_{2}:\left(\sigma_{2}, \mu_{2}\right)$ is a full regular fuzzy graph,
$\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{\mathrm{j}}\right)=\mathrm{k}_{2} \operatorname{andd}_{\mathrm{G}_{2}^{*}}\left(\mathrm{v}_{\mathrm{j}}\right)=\mathrm{r}_{2} \forall \mathrm{v}_{\mathrm{j}} \in \mathrm{V}_{2}$.
Then for any vertex ($\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}$) in $\mathrm{G}_{1} \circ \mathrm{G}_{2}:(\sigma, \mu)$,

$$
\mathrm{d}_{\mathrm{G}_{1}, \mathrm{G}_{2}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=\mathrm{k}_{1}+\mathrm{k}_{2}+\mathrm{r}_{1} \mathrm{r}_{2} \mathrm{c} .
$$

This is a constant and hence the strong product $\mathrm{G}_{1} \circ \mathrm{G}_{2}:(\sigma, \mu)$ is a full regular fuzzy graph.

Theorem 4.6:

If $\mathrm{G}_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and $\mathrm{G}_{2}:\left(\sigma_{2}, \mu_{2}\right)$ are two full regular fuzzy graphs such that $\sigma_{1} \geq \mu_{2}$ and $\sigma_{2} \geq \mu_{1}$ and $\mu_{1} \vee \mu_{2}=C$ (a constant) with G_{1} * and $\mathrm{G}_{2}{ }^{*}$ are k -regular where ' k ' is a constant, then their strong product $\mathrm{G}_{1} \circ \mathrm{G}_{2}:(\sigma, \mu)$ is also a full regular fuzzy graph.

Proof:

Let $\mathrm{G}_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and $\mathrm{G}_{2}:\left(\sigma_{2}, \mu_{2}\right)$ be two full regular fuzzy graphs such that $\sigma_{1} \geq \mu_{2}$ and $\sigma_{2} \geq \mu_{1}$ and $\mu_{1} \vee \mu_{2}=C$ (a constant) with G_{1} * and $\mathrm{G}_{2}{ }^{*}$ are k -regular. Then,

$$
\begin{aligned}
\mathrm{d}_{\mathrm{G}_{1}, \mathrm{G}_{2}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)= & {\left[1+\mathrm{d}_{\mathrm{G}_{2}^{\prime}}\left(\mathrm{v}_{\mathrm{j}}\right)\right] \mathrm{d}_{\mathrm{G}_{\mathrm{G}_{1}}}\left(\mathrm{u}_{\mathrm{i}}\right) } \\
& +\left[1+\mathrm{d}_{\mathrm{G}_{\mathrm{i}}}\left(\mathrm{u}_{\mathrm{i}}\right)\right] \mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{\mathrm{j}}\right) \\
& -\left[\mathrm{d}_{\mathrm{G}_{\mathrm{i}}}\left(\mathrm{u}_{\mathrm{i}}\right) \mathrm{d}_{\mathrm{G}_{2}^{*}}\left(\mathrm{v}_{\mathrm{j}}\right)\right] \mathrm{C} .
\end{aligned}
$$

Since $\mathrm{G}_{1}:\left(\sigma_{1}, \mu_{1}\right)$ is a full regular fuzzy graph with G_{1} * is k -regular,
$\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{k}_{1}$ and $\mathrm{G}_{\mathrm{G}_{1}^{*}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{k} \forall \mathrm{u}_{\mathrm{i}} \in \mathrm{V}_{1}$.
Similarly since $\mathrm{G}_{2}:\left(\sigma_{2}, \mu_{2}\right)$ is a full regular fuzzy graph with G_{2} * is k -regular,
$\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{\mathrm{j}}\right)=\mathrm{k}_{2}$ and $\left.\mathrm{d}_{\mathrm{G}_{2}^{*}} \mathrm{v}_{\mathrm{j}}\right)=\mathrm{k} \forall \mathrm{v}_{\mathrm{j}} \in \mathrm{V}_{2}$.
Then for any vertex $\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right)$ in $\mathrm{G}_{1} \circ \mathrm{G}_{2}:(\sigma, \mu)$,

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{G}_{1} \mathrm{G} \mathrm{G}_{2}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \\
& =(1+\mathrm{k}) \mathrm{k}_{1}+(1+\mathrm{k}) \mathrm{k}_{2}-\mathrm{k}^{2} \mathrm{C} \\
& =(1+\mathrm{k})\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)-\mathrm{k}^{2} \mathrm{C} .
\end{aligned}
$$

This is a constant and hence the strong product $G_{1} \circ G_{2}:(\sigma, \mu)$ is a full regular fuzzy graph.

Theorem 4.7:

If $\mathrm{G}_{1}:\left(\sigma_{1}, \mu_{1}\right)$ is a full regular fuzzy graph and $\mathrm{G}_{2}:\left(\sigma_{2}, \mu_{2}\right)$ is a partially regular fuzzy graph such that $\sigma_{1} \leq \mu_{2}, \sigma_{1}$ is a constant and $\mu_{1} \wedge \mu_{2}=\mathrm{c}$ (a constant), then their strong product $\mathrm{G}_{1} \circ \mathrm{G}_{2}:(\sigma, \mu)$ is a full regular fuzzy graph.

Proof:

Let $\mathrm{G}_{1}:\left(\sigma_{1}, \mu_{1}\right)$ be a full regular fuzzy graph and $\mathrm{G}_{2}:\left(\sigma_{2}, \mu_{2}\right)$ be a partially regular fuzzy graph such that $\sigma_{1} \leq \mu_{2}, \sigma_{1}$ is a constant and $\mu_{1} \wedge \mu_{2}=c$ (a constant).

Then for any vertex ($\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}$) in $\mathrm{G}_{1} \circ \mathrm{G}_{2}:(\sigma, \mu)$,

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{G}_{1} \mathrm{G}_{2}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \\
& \left.=\mathrm{d}_{\mathrm{G}_{2}^{*}}\left(\mathrm{v}_{\mathrm{j}}\right) \sigma_{1}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{d}_{\mathrm{G}_{\mathrm{i}}} \mathrm{u}_{\mathrm{i}}\right) \\
& \quad+\left[\mathrm{d}_{\mathrm{G}_{1}^{*}}\left(\mathrm{u}_{\mathrm{i}}\right) \mathrm{d}_{\mathrm{G}_{2}^{*}}\left(\mathrm{v}_{\mathrm{j}}\right)\right] \mathrm{c} .
\end{aligned}
$$

Since G_{1} : $\left(\sigma_{1}, \mu_{1}\right)$ is a full regular fuzzy graph,
$\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{k}_{1}$ and $\mathrm{G}_{\mathrm{G}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{r}_{1} \forall \mathrm{u}_{\mathrm{i}} \in \mathrm{V}_{\mathrm{i}}$.
Similarly since $\mathrm{G}_{2}:\left(\sigma_{2}, \mu_{2}\right)$ is a partially regular fuzzy graph, $\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{v}_{\mathrm{j}}\right)=\mathrm{r}_{2} \forall \mathrm{v}_{\mathrm{j}} \in \mathrm{V}_{2}$. Then the degree of any vertex $\left(u_{i}, v_{j}\right)$ in the
strong product $G_{1} \circ G_{2}:(\sigma, \mu)$ is given by, $\mathrm{d}_{\mathrm{G}_{1} \circ \mathrm{G}_{2}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=\mathrm{r}_{2} \mathrm{\sigma}_{1}+\mathrm{k}_{1}+\mathrm{r}_{1} \mathrm{r}_{2} \mathrm{c}$.

This is a constant and hence the strong product $\mathrm{G}_{1} \circ \mathrm{G}_{2}:(\sigma, \mu)$ is a full regular fuzzy graph.

V. CONCLUSION

In this paper, we have studied the regular properties of the strong product of two fuzzy graphs and illustrated that when two fuzzy graphs are regular then their strong product need not be regular. We have provided the conditions under which the strong product of two regular fuzzy graphs is regular and the strong product of two full regular fuzzy graphs is full regular. In addition to the existing properties these properties will be helpful to study the properties of large fuzzy graph as a combination of small fuzzy graphs.

