
GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 1

Volume-4, Issue-4, April-2015 • ISSN No 2277 - 8160

Research Paper Commerce Engineering

Development of dsPIC based HMI for Real Time Monitoring,
Controlling and Graphical Analysis of Industrial AC Drive

Maulik Timbadiya Department of Electronics and Communication Engineering, Venus
International college of Technology, Gandhinagar

Prof. Dimple Khant Asst. Professor, Department of Electronics and Communication Engineering,
Venus International college of Technology, Gandhinagar

AC Drive is a perfect solution for soft start, speed regulation, energy saving and intelligent control of Induction Motor.
For demanding applications like crane (hoist), conveyor, stacker, centrifuge, etc. It delivers unmatched performance.

A researcher shows the Supervisory Control on drive is implemented using a Programmable Logic Controller (PLC) to monitor and control the
drive performance. This paper focus on Design of Human Machine Interface (HMI) for Real Time Monitoring and Controlling Operation of AC
Drive especially for Graphical Analysis of drive parameter such as torque, speed, temperature, etc., The design is basically divided in two sections
out of which one is HMI controller section and second is AC Drive controller section which communicates using Modbus Protocol. HMI section
includes Dot Matrix LCD and dsPIC33EP512MC506 series controller. AC Drive controller section includes TMS320F28069 DSP controller to control
rectifier unit, DC bus and Inverter Unit. And it has certain controlling Algorithm and Fault Detection Algorithm. This AC Drive also includes Built-in
PLC control that can be programmed by HMI.A rigorous Design and Development will be carried out using MPLAB X and dsPIC33 Development
Board for PIC Controller, Code Composer studio and DSP starter kit for DSP Controller.

ABSTRACT

KEYWORDS : Modbus, Human Machine Interface, AC Drive, Graphical LCD

HMI Power Supply Design Using MC33063A
The MC33063A is easy-to-use ICs containing all the primary circuitry
needed for building simple dc-dc converters. These devices primarily
consist of an internal temperature-compensated reference, a com-
parator, an oscillator, a PWM controller with active current limiting,
a driver, and a high-current output switch. Thus, the devices require
minimal external components to build converters in the boost, buck,
and inverting topologies.

Figure 1 Functional Block Diagram of Step down DC-DC Converter

As show in figure, Here we are configured IC in buck topologies to
get 3.3V DC from 24V DC. Pin no.5 of IC is comparator inverting input,
make divider network so that it will give 1.25V at comparator invert-
ing input pin. So, by comparing both this input value IC makes a close
loop to maintain 3.3V continuously. For, Current limiting purpose a re-
sistor is placed between Vcc and Ipk sense. Here we are using 0.3 Ω to
limit 500mA current maximum, if current reach to 500mA then it will
shut down the clock and it will further switch off RS flip-flop and final
output will be zero.

Implementation Methodology
In firmware,first stage is oscillator initialization in which we are using
12 MHz external oscillator with dsPIC33EP512MC506. Before we go-
ing further, I am boosting my external clock frequency with PLL be-

cause of controller can support up to 70 MIPS. By using this feature
we can achieve very high speed data processing. So, I am continuous-
ly wait in while loop until PLL is locked.Whenever phase is locked it
will indicate by an acknowledgement flag.

Figure 2 Simplified Block-diagram of HMI

At this stage controller working on 70 MHz, after that we are able to
start further processing so first we initialize General Purpose Input
Output (GPIO). After GPIO is initialized, we can now able to initialize
GLCD. After that according to our need of different types of peripheral
we would like to initialize UART, TIMER, I2C and RAM peripherals.

Now we are going to do our main task that is real time monitoring
and controlling of AC drive. We are continuously working on timely
divided process inwhile(1); statement. It will repeat until controller
is restarted. In while(1);, suppose any time any peripheral required
a service then it will be served according to that interrupts priority.
Here whole Process of Serial and I2C communication done through
the interrupt basis because of polling method is not reliable in for a
large coding like this HMI. To get real time and high speed data we
must go through the interrupts based process.

After successfully completion of Interrupt service routine, controller
need to get back when it will cause by interrupt and need complete
present activity it is done by the stack pointer.

Modbus Query-Response Model
When a message is sent from a master to a slave device the function
code field tells the slave what kind of action to perform [1].

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 2

Volume-4, Issue-4, April-2015 • ISSN No 2277 - 8160

Figure 3Master–Slave Query–Response Cycle

When the slave responds to the master, it uses the function code field
to indicate either a normal (error–free) response or that some kind of
error occurred (called an exception response). For a normal response,
the slave simply echoes the original function code. For an exception
response, the slave returns a code that is equivalent to the original
function code with its most–significant bit set to logic 1. For example,
a message from master to slave to read a group of holding registers
would have the following function code:

0000 0100 (Hexadecimal 04)

If the slave device takes the requested action without error, it returns
the same code in its response. If an exception occurs, it returns:

1000 0100 (Hexadecimal 84)

Figure 4 Query–Response Cycles at 500ms

In addition to its modification of the function code for an exception
response, the slave places a unique code into the data field of the re-
sponse message [1]. This tells the master what kind of error occurred,
or the reason for the exception. The master device’s application pro-
gram has the responsibility of handling exception responses. Typical
processes are to post subsequent retries of the message, to try di-
agnostic messages to the slave, and to notify operators. In monitor
mode parameter, we are doing queries on every 500ms for real time
monitoring.

dsPIC33E performance evaluation with HMI

To evaluate performance of dsPIC33EP512MC506, we should go
through the firmware portion. First of all for oscillator verification we
set timer of 2ms with oscillation frequency of 70MHz. And as we can
show on digital oscilloscope waveform, it is clearly shows that timer
works properly. For the timer verification I put one digital IO as output
and ON-OFF continuously on timer interval.

Figure 5 2ms Timer Verification

In firmware of display we have developed user friendly navigation
system. In which, hundreds of parameter are divided in terms of dif-
ferent MODEs, GROUPs and pages. For example if parameter is M101
means that MODE-M, GROUP-1 and 1st parameter of that group. In-
stead of going into any parameter user can continuously monitor val-
ue of 1-8 parameter simultaneously in normal mode.

Normal mode is accessible by the user by pressing NORM key from
the keypad. If there is any fault occur in AC drive it will initiate instant-
ly with the fault name. For analysis purpose we have stored 10 fault in
fault history screen with the 8 different parameter related to AC drive.
Like DC bus voltage, Output current, Output frequency and Kilo-Watt
etc.

Time taken from the RTC is used to check fault occurrence time and
after that it is stored in fault history. We have the screen shot of LCD
for firmware verification purposes.

Parameter Value
HMI Power Supply
Design (DC-DC step
down)

500 mA at 3.3 Vdc
(able to deliver up to 1.5A)

Ripple Frequency <3% of Vout

Modbus Protocol

•Communication with control card through
serial port (UART) using RS – 485 & Modbus
RTU protocol
•Baud Rate – 9600 bps
•Frame Structure – 1 start bit, 8 data bits, 1
parity bit, 1 stop bit
•Parity – Odd parity

I2C Protocol 100 KHz Clock (EEPROM and RTC)

LCD Access System Row : Paging System
Column : Line System

Table 1 HMI parameter and its value

Conclusion
I have successfully completed hardware design of HMI. I simulat-
ed different DC-DC step down converter and finally concluded that
MC33063A IC is a perfect solution according to this application. In
this DC-DC converter, I have also achieved ripple frequency less than
3% for better hardware efficiency. I have successfully interfaced GLCD,
TRANSCEIVER, KEY-PAD, EEPROM and RTC with dsPIC33EP512MC506.
Also I have developed firmware for HMI and conclude that it works
satisfactory. I have implemented RS-485 modbus protocol on firm-
ware and successfully communicate between HMI (dsPIC33EP-
512MC506) and AC drive control (TI DSP) card.

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 3

Volume-4, Issue-4, April-2015 • ISSN No 2277 - 8160

REFERENCES [1] Modicon Modbus Protocol Reference Guide, PI–MBUS–300 Rev. J | [2] Sreejeth M.; Singh M.; Kumar P., "Monitoring, Control and Power Quality
Issues of PLC Controlled Three-Phase AC Servomotor Drive", IEEEPower India Conference, Pg. no. 1-5, December 2012. | [3] He Yang; Li Kejian;
CaiQizhong, “Design of ARM-based human-machine interface of plastic injection blow molding machine”, IEEE International Conference on

Computer Application and System Modeling (ICCASM 2010), Pg. no. 449-453, October 2010. | [4] Yanfang Wang; Wandui Mao; Jinying Li; Peng Zhang; “A Distributed Rectifier Testing
System Based on RS-485”,5th IEEE Conference on Industrial Electronics and Applicationsis, Pg. no. 779-781, June 2010. | [5] Karim I. A., “A Low Cost Portable Oscilloscope Based on
Arduino and GLCD”,3rd International Conference on Informatics, IEEE Electronics & Vision, Pg. no. 1-4, May 2014. | [6] Zhang Haibo; GaoShenyong; Li Daqing; Yu Feng, “An Efficient
Chinese Character System on Embedded Systems”, IEEEInternational Forum on Information Technology and Applications, Pg. no. 61-63, July 2010. | [7] Urbas L.; Doherr F., “autoHMI:
a model driven software engineering approach for HMIs in process industries”, CSAE, IEEE, Pg. no. 627-631, June 2011. |

