

KEYWORDS : Trithiazyl trichloride (S₃N₃Cl₃), Tetra Sulphur Tetra Nitride (S₄N₄), Thorium (Th)

1. INTRODUCTION

 $S_3N_3Cl_3$ (trithiazyl trichloride) was prepared by the chlorination of S_3N_4 in a non aqueous solvent by Nelson method [1]. Various author reported the formation of the complexes of $S_3N_3Cl_3$ with $Cu^{2+}, ThCl_4Cu(II), ZrOCl_2:2H_2O, Zn(II), Cd(II)$ and Hg(II) [1-6] In the present paper, the investigations done for the complex of $S_3N_3Cl_3$ with $Th(NO_4)_4.4H_2O$ are being reported.

2. EXPERIMENTAL DETAILS

First tetrasulphur tetranitride (S_4N_4) was prepared by the reaction of NH₄Cl on S_2Cl_2 in non polar solvent kept in an ice bath. S_4N_4 was formed according to the following reaction-

$$S_2Cl_2 \longrightarrow S_4N_4$$

By passing chlorine into S_4N_4 solution, adduct of S_4N_4 - trithiazyl trichloride was synthesized. The mass formed was separated and dried in air. To prepare complex of Th with $S_3N_3Cl_3$, $S_3N_3Cl_3$ solution was mixed with the solution of Th compounds and the resultant solution was refluxed on a hot plate for 20 hours. The product (complex), thus obtained was separated, washed by suitable solvent, dried over fused CaCl₃ and stored.

Quantitative estimations for constituent elements of the complex were done gravimetrically as well as spectrometrically. The molecular weight was determined by Rast's method. I. R. spectrum of the complex was recorded on Perkin Elmer 337 infrared spectrometer in the range of 4000-400 cm⁻¹ using Nujol Mull technique at room temperature. Electronic spectrum was graphed on UV 260 spectrometer in the range of wavelength 200nm-900nm. EPR and XRD spectra were recorded subsequently on JEOL (RE-2X)X band ESR spectrometer (Japan) in magnetic field range 0-8000 Gauss at 300 K temperature and Philips XRD Modal No. PW 3710, by using CuK_a source of radiation (λ =1.54056A0) at room temperature in the range of 2 Θ from 7 to 70° respectively.

3. RESULTS AND DISCUSSION

The complex of $S_3N_3Cl_3$ with thorium nitrate was analyzed for its constituent elements along with its molecular weight. Analytical data of the complex: % found (calculated)- S 12.07 (12.05); N 12.32 (12.30); Cl 13.39 (13.37); O 32.18 (32.14); H 1.0 (1.00); Th 29.17 (29.23) and molecular weight found (calculated)- 1193.04 (1194.75) g/mole assigned it as $[S_3N_3Cl_3Th(NO_3)_4.4H_2O]_{1.5}$. To come at a definite molecular structure of the complex, the results of instrumental analysis done were as follows

3.1 Mass Spectral Analysis

The fragments according to the mass lines were noted against each M/Z ratio. The mass lines for M/Z ratio at 120, 139, 155, 207, 227, 279, 307, 391, 403, 424, 443, 460, 474, 485, 498, 511, 544 and 600 were on account of $(N-S-N)_2$, $(S-N)_3$, $(N-S-N)_2$, $CI, S_3N_3CI_2$, $(S_2-N-CI)_2$, $S_5N_5CI, S_3N_3CI_2$, $(S_3N_2CI_2)_2$, $SN_3CITh(NO_3)$, S_4N_2CITh , $SNCI_2Th(NO_3)$, S_2NCI_2 , $Th(NO_3)$, S_4N_2CITh , $SNCI_2Th(NO_3)$, $S_5N_5CI_2$, SI_2OI_2 , $SI_2OI_$

ent in the complexes.

The mass spectrum of complex also possesses mass peaks at 391 for $(S_3N_2Cl_2)_2$, 403 for SN_3Cl Th (NO_3) , 443 for S_2NCl_2 Th (NO_3) suggesting that Th (NO_3) had linked with $S_3N_3Cl_3$ ring while mass lines at 460 for S_2NCl_2 Th $(NO_3).H_2O$, 474 for $(S-N-Cl)_2$ Th $(NO_3).H_2O$, 498 for S_3N_4Cl Th $(NO_3).H_2O$, 589 for $S_2N_3Cl_2$ Th $(NO_3)_2.3H_2O$ indicate that one $S_3N_3Cl_3$ ring had been linked with Th $(NO_3)_4.4H_2O$ during the reaction.

3.2 I. R. spectral studies

The frequencies found in its I.R. spectrum are shown in table-1. Due to the lack of lower region facility the presence of metal ions could not be detected while its mass spectrum shows the presence of metal cations along with their anions. The vibrations at 662(d) cm⁻¹and 886(d) cm⁻¹ which are due to the presence two S.N ----> M bands indicating that two N and two S atoms of S, N, Cl, ring had co-ordinated to thorium atom of thorium nitrate quadridentatidly. The vibration at 1064 (s) cm⁻¹ was due to free S-N band. The vibrations from 1100 (s) cm⁻¹-1440 (s) cm⁻¹ and at 2117(s) cm⁻¹ were due to N-S-Cl band. The vibrations at 1499(s) cm⁻¹ and 1685 (b-d) cm⁻¹ were corresponding to N-O group. The vibrations at 2320 (s) cm⁻¹ and 2508(s) cm⁻¹ were for two distorted S coordinated N-S bond suggesting the co-ordination of S-N bands through its S atom to thorium atom forming a guadridentated complex. The other vibrations from 2871(s) cm⁻¹- 3839(s) cm⁻¹ were due to OH groups showing the presence of water molecule of thorium nitrate.

Table-1: I.R. spectral data of the complex

S.No.	Vibrations cm ⁻¹	Transm- ittance (%)	Band assignment	Force constant (K x 10 ⁵ dyne/ cm)
1	662.0(d)	4.40	N-S>M	2.52
2	866.0(d)	52.78	S-N>M	4.32
3	1064.0(s)	22.59	S-N	6.52
4	1100.0(s)	1.82	N-S-CI	5.46
5	1256.0(s)	12.49	N-S-CI	7.12
6	1392.0(s)	0.29	N-S-CI	8.75
7	1413.0(s)	6.38	N-S-CI	9.01
8	1440.0(s)	7.66	N-S-CI	9.36
9	1499.0(s)	15.52	N-O	9.92
10	1685.0(b-d)	-0.14	N-O	12.53
11	2117.0(s)	62.18	N-S-CI	20.23
12	2320.0(s)	64.51	δN-S	30.98
13	2508.0(s)	65.74	δN-S	36.21
14	2871.0(s)	20.75	0-Н	3.26
15	2932.0(s)	11.76	0-H	3.40
16	3451.0(s)	1.25	0-Н	4.71
17	3839.0(s)	60.30	0-H	5.82

3.3 Electronic Spectrum

The electronic spectrum of the complex had two bands out of which the lower band at 28248.59 cm⁻¹ corresponds to p_{π} - d_{π} transition of S₁N₃Cl₃ ring. The higher band at 33112.58 cm⁻¹ was due to charge

Volume-4, Issue-8, August-2015 • ISSN No 2277 - 8160

transfer transition as confirmed by the frequency ratio $v_1/v_2 = 1.72 < 2$. In the complex the spin orbital coupling was not taking place because the value of oscillator strength was of the order of 10⁻⁶ for spin forbidden leporte forbidden transition. The low value of Dq and high value of electron repulsion parameter 'B' were also in accordance with co-ordination linkage between thorium nitrate and trithiazyl chloride forming a quadridentated complex with absence of ${}^{2}E_{a} < -- {}^{2}T_{2a}$ transitions which were generally found in thorium complexes. The values of band gap energy (ΔE_{a}) and no. of conduction electrons (table-2) suggest its conductive nature.

Table -2: U.V. 9	pectral data	a of the	complex

Band assignment, nm(cm ⁻¹)	Molar ab- sorp- tivity ε	v ₁ / v 2	Dq (cm ⁻¹)	Band gap energy ∆E _g (ev)	No. of con- ductive electrons (n _c)	Oscil- lator strength (f)	В
302 (33112.58) 354 (28248.9)	0.399 0.181	1.72	486.40	0.30	2.46x10 ²⁴	3.31x10 ⁻⁶	1921.83 1511.97

3.4 E. P. R. Spectrometric Investigations

There was no peak observed in the E.P.R. spectra of the complex suggesting that this complex was diamagnetic in nature with incomplete f and d shells in Thorium to co-ordinate with trithiazyl chloride resulting the formation of quadridentated complex of thorium nitrate, while S₃N₃Cl₃ is paramagnetic in nature. This indicates the change in bonding of S₃N₃Cl₃ with donation of electron pairs to Th.

3.5 X RAY Diffractometric Studies

In XRD spectrum of the complex, a strong peak at 44.62°(2O) of high intensity for metal atom having one peak of its right side at $64.95^{\circ}(2\Theta)$ due to S₃N₃Cl₃ ring were observed. The other peaks were for the other parts of the ring. The value of sin²O, hkl, "d", axial ratio and axial angles (Table 3 and 4) were corresponding to triclinic geometry of the complex in which one S₃N₃Cl₃ ring had co-ordinated to Th(NO₃)₄.4H₂O through metal atom(Fig-1). Thus Th atom of Th(NO₃)₄.4H,O was quadricientated co-ordinated by one S₃N₃Cl₃ ring.

ACKNOWLEDGEMENT

I express my sincere gratitude to Dr. S.P.S. Jadon Ex- Principal, S.V. College, Aligarh (U.P.) for his continuous support during this work.

Table -3: XRD Pattern of the complex

S.No.	2⊖(deg.)	Sin ² ⊖	(h ² +k ² +l ²)Q	hkl	d (Aº)	d _{hkl} (A ⁰)
1	9.260	0.0065	1x0.0065	100	9.5450	9.5450
2	13.093	0.1140	2x0.0065	110	6.7568	6.7558
3	15.00	0.1305	3x0.0056	111	5.9025	5.9429
4	20.514	0.1718	5x0.0063	210	8.6450	8.6799
5	21.764	0.1888	6x0.0059	211	8.1597	8.1879
6	27.588	0.2384	9 x0.0065	221	6.4620	6.3694
7	28.82	0.2488	10 x0.0061	310	8.8640	8.6421
8	31.172	0.2607	11 x0.0065	311	8.8640	8.6421
9	32.348	0.2785	13 x0.0060	320	8.2974	8.2740
10	42.936	0.3659	21 x0.0064	421	8.4207	8.4044
11	44.455	0.3783	24 x0.0060	422	8.1446	8.1194
12	46.00	0.3907	25 x0.0061	430	7.8862	7.8891
13	51.764	0.4265	29 x0.0065	432	7.0587	7.0965

Table -4: XRD Pattern of the complex

				-		
S. No.	a ₀ (A ⁰)	b ₀ (A ⁰)	c ₀ (A ⁰)	a(deg.)	β(deg.)	γ (deg.)
1	9.5541	7.8040	5.0374	86.256	125.272	148.127
2	19.1082	33.7567	43.9261	153.880	131.633	68.936
3	28.6623	50.6348	65.8891	151.165	128.993	66.511
4	29.8326	23.8637	20.1469	93.545	125.814	136.392
5	38.5138	30.8079	26.0095	92.678	124.760	135.294
6	39.4495	31.5564	26.6414	92.554	124.611	135.177

Fig.1: Proposed Structure of the Complex S₃N₂Cl₃Th⁺⁴

REFERENCES

1. Jadon S.P.S., Synthesis and characterisation of the complexes with ThCl₄ under varying conditions. Asian J. Chem. 2000; 12(4):1139-1145 | 2. Jadon S.P.S. Mass F.T.I.R. and E.P.R. Spectral characterization of the complex of S3N3Cl3 with Cu(II). J. Bangladesh Acad. Science 2000 ; 24(2): 135-140. | 3. Agarwal.A and Jadon S.P.S. Spectral Investigation of the complexes of S₁N₂Cl₃ with ZrOCl₂2H₂O. Asian J. Chem. 2001; 13(4): 1525-1529. | 4. Rani S. and Jadon S.P.S. Synthesis and spectral investigation of the complex of S₃N₃Cl₃ with Zn(II). J. Indian Chem. Soc. 2003; 80: 1. | 5. Rani S. and Jadon S.P.S. X-Ray powder diffraction of the complexes of S, N, Cl, with Zn(II) compound. Asian J. Chem. 2004; 16(3-4): 1975-1977. | 6. Rani S. and Jadon S.P.S. Synthesis and spectral investigation of the complex of S₃N₃Cl₃ with Cd(II) and Hg(II). Asian J. Chem. 2004; 16(2): 853-856.