
GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 428

Volume-4, Issue-7, July-2015 • ISSN No 2277 - 8160

Research Paper Commerce Engineering

Identification of Malicious Service Provider Through Clique
Cover Algorithm in Hadoop Mapreduce

Dr. Sunita Varma Department of computer Application, SGSITS, Indore, India

Ms. Lata Mahawar Department of Computer Engineering SGSITS Indore, India

Cloud computing is a technological advancement that focuses on the way in which we design computing systems,
develop applications and leverage existing services for building software resources are made available through the
internet offered on a pay per use basis from cloud computing vendors. It provides three types of services which include

Infrastructure as a Service(IaaS), platform as a Service(PaaS), Software as a Service(SaaS). Application service provider deliver their application
by SaaS cloud systems via massive cloud computing infrastructure. SaaS clouds are vulnerable to malicious attack because cloud infrastructure
has a sharing nature.

 In this paper an algorithm is proposed for integrity attestation. Our approach provides a modified integrated attestation graph analysis scheme
which uses constrained clique cover algorithm that can provide stronger attacker pinpointing power. This technique identify malicious service
provider on the basis of size of clique. This approach also detect malicious service provider that perform partial misbehavior.

ABSTRACT

KEYWORDS : Application service providers (ASPs), virtual machine (VM), secure
dataflow processing.

2. INTRODUCTION
Cloud computing introduce due to rapid growth of hardware, net-
working, middleware, and virtual machine technologies. Cloud com-
puting is a model that provide different services on demand such as
infrastructure as a service(IaaS), platform as a service(PaaS) and soft-
ware as a service(SaaS) through Internet on pay per use basis. Cloud
computing recently popular as a resource hosting platform which
allows multiple users to share the common physical infrastructure.
Software as a service clouds such as Google AppEngine and Ama-
zon Web Service(AWS)[1],[2] build upon the concept of software as
a service[3] and service oriented architecture[4],[5] which enable ap-
plication service provider to deliver their services in cloud computing
infrastructure[12]. Application service providers (ASPs) can lease a set
of resources such as hardware, middleware from the cloud system to
offer software as a service without maintaining their own computing
infrastructures, on demand and pay per use basis[6]. Cloud systems
are used for processing large amount of data which required large
amount of resources. The research work focuses on dataflow process-
ing systems that have many real world applications such as security
surveillance and business intelligence. Users can feed data from vari-
ous data sources into the cloud system to perform various data pro-
cessing functions and receive final data processing results from the
cloud.

However, cloud systems are often shared by multiple tenants either it
is users or service providers that belong to different security domains,
which make them vulnerable to various malicious attacks [7],[8]. The
data processing services are taking large time, which provides more
opportunities for attackers to exploit the system vulnerability and
perform strategic colluding attacks. Although virtualization ensures
certain isolation between users, malicious attackers can still leverage
the shared hardware to launch attacks from the VMs they own or by
compromising VMs of benign users. One of the top security concerns
for cloud users is to verify the integrity of data processing results. Our
research focuses on providing application-level attestation framework
to dynamically verify the integrity of dataflow processing services
provisioned through multi-party cloud computing infrastructures. We
aim at achieving a practical integrity attestation technique for large-
scale cloud infrastructures without requiring application modifica-
tions or assuming a trusted entity at third-party service provider sites.

3. RELATED WORK
Previous research work has provided various software integrity at-
testation solutions technique that require special third party and
those techniques that does not require special trusted hardware or
secure kernel support these techniques are Traditional Byzantine
Fault Tolerance (BFT) technique, RunTest, AdapTest, IntTest, Hat-
man[9],[10],[11],[12],[13]. Traditional Byzantine fault tolerance (BFT)

technique[9] detect malicious service provider by taking a result of
all service provider and verify their result, this technique also called
full-time majority voting (FTMV), but this technique produce high
overhead to the cloud system. RunTest[10] is a runtime service in-
tegrity attestation scheme that uses a novel attestation graph model
to capture attestation results among different cloud nodes. They de-
sign a clique based attestation graph analysis algorithm to pinpoint
malicious service providers and recognize colluding attack patterns.
This scheme can achieve runtime integrity attestation for cloud da-
taflow processing services using a small number of attestation data.
AdapTest[11], a novel adaptive runtime service integrity attestation
framework for large-scale cloud systems. AdapTest builds on top of
previously developed system RunTest that performs randomized
probabilistic attestation and employs a clique-based algorithm to pin-
point malicious nodes. However, randomized attestation still imposes
significant overhead for high-throughput multi-hop data processing
services. In contrast, AdapTest dynamically evaluates the trustiness of
different services based on previous attestation results and adaptively
selects attested services during attestation. Thus, AdapTest can sig-
nificantly reduce the attestation overhead and shorten the detection
delay and provide a novel adaptive multi-hop integrity attestation
framework based on a new weighted attestation graph model. De-
rive both per-node trust scores and pair-wise trust scores to efficiently
guide probabilistic attestation. In IntTest[12], a new integrated service
integrity attestation framework for multitenant cloud systems. IntTest
provides a practical service integrity attestation scheme that does not
assume trusted entities on third-party service provisioning sites or re-
quire application modifications. IntTest builds upon our previous work
RunTest and AdapTest but can provide stronger malicious attacker
pinpointing power than RunTest and AdapTest. Specifically, both Run-
Text and AdapTest as well as traditional majority voting schemes need
to assume that benign service providers take majority in every service
function. However, in large-scale multitenant cloud systems, multiple
malicious attackers may launch colluding attacks on certain targeted
service functions to invalidate the assumption. To address the chal-
lenge, IntTest takes a holistic approach by systematically examining
both consistency and inconsistency relationships among different ser-
vice providers within the entire cloud system. IntTest examines both
per-function consistency graphs and the global inconsistency graph.
The per-function consistency graph analysis can limit the scope of
damage caused by colluding attackers, while the global inconsistency
graph analysis can effectively expose those attackers that try to com-
promise many service functions. Hence, IntTest can still pinpoint ma-
licious attackers even if they become majority for some service func-
tions. By taking an integrated approach, IntTest can not only pinpoint
attackers more efficiently but also can suppress aggressive attackers
and limit the scope of the damage caused by colluding attacks. More-
over, IntTest provides result autocorrection that can automatically

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 429

Volume-4, Issue-7, July-2015 • ISSN No 2277 - 8160

replace corrupted data processing results produced by malicious
attackers with good results produced by benign service providers.
Hatman[13] uses EigenTrust values for identify the malicious service
provider.

The proposed approach is a modification of IntTest, this approach
only uses the clique cover algorithm, minimum size of clique is used
to identify malicious service provider. This approach identify aggres-
sive malicious service provider as well as partial malicious service pro-
vider.

4. PRELIMINARY
This section first describe multi tenant cloud infrastructure and de-
scribe the data processing in cloud. This section also describes service
composition in cloud computing system.

3.1 Multi-Tenant Cloud Infrastructure
Cloud computing infrastructure shared between a multiple tenant,
same resources are shared between the multiple tenants. Consider an
example for resource leasing infrastructure is Amazon EC2[1] in the
figure 1.

Figure 1: Cloud infrastructure shared by three tenant:
p1, p2 and p3.

In EC2, cloud system lease a set of physical hosts running on virtu-
al machine. The user can run application within the virtual machine
and will be pay per use basis. Cloud computing provide a facility for
user do not need to maintain their physical infrastructure and use
virtual infrastructure with pay per use basis. Cloud computing also
provides a platform for different service provider for deliver their ser-
vices, service provider pi lease a resources from cloud infrastructure.
Each service divided into service component di and these services are
component store on a shared infrastructure. Whenever the user send
the access request to cloud, the services divided into component and
combine result back to user.

3.2 Dataflow Processing in Clouds

Figure 2: Dataflow processing service.

Data processing system e.g., Google’s MapReduce , Yahoo’s Hadoop,
IBM System S, Microsoft Dryad have become increasingly popular
with applications in many domains such as business intelligence, se-
curity surveillance, and scientific computing[10]. The research work
focus on the data flow processing service, which provides more op-
portunity to attacker to exploit the system vulnerability. In this data
processing system row data is read from the source and next step is
to perform some conversion and calculation on row data and produce
a final result to user. User requests the dataflow processing services
through portal node. Portal node takes input from user and forward
final result to user.

3.3 Service composition

Application service providers provide different service on demand pay
per use basis. A single service composed from multiple individual ser-
vice components [8][9]. For example, a disaster assistance claim pro-
cessing application consists of voice-over-IP (VoIP) analysis compo-
nent, e-mail analysis component, community discovery component,
clustering and join components.

5. DESIGN AND ALGORITHM
In this section we describe the basics of integrity attestation tech-
nique: baseline attestation technique, assumptions. Later we describe
the integrity attestation technique in detail.

4.1 Assumptions:
This approach first assumes that the total number of malicious service
provider is less than the total number of legitimate service provider in
the entire cloud system. Without this assumption it is very difficult for
any integrity attestation technique to detect malicious service provid-
er because it identify malicious service provider by using the results of
legitimate service provider. Second assume that malicious nodes have
no knowledge of other nodes except those nodes to whom they in-
teract for data receiving and forwarding. Third assumes that the result
inconsistency caused by hardware or software faults can be marked
by fault detection schemes and are excluded from our malicious at-
tack detection.

4.2 Baseline attestation scheme:
To detect malicious service provider in a cloud computing system this
technique uses replay based consistency check and drive both con-
sistency and inconsistency relationship between service providers.
Consider example in figure 3 shows the consistency check scheme
for attesting three service provider p1, p2, and p3 that offer the same
service function f. The portal sends the original input data d1 to p1
and gets back the result f (d1). Next, the portal sends d1’, a duplicate
of d1 to p3 and gets back the result f(d1’).The portal then compares
f(d1) and f(d1’) to see whether p1 and p3 are consistent.

Figure 3: Baseline attestation scheme.

The reason for using this approach is that if two service providers dis-
agree with each other on the processing result of the same input, at
least one of them should be malicious. We should not send an input
data item and its duplicates (i.e., attestation data) concurrently. After
receiving the processing result attestation is performed. Thus, the ma-
licious attackers cannot avoid the risk of being detected when they
produce false results on the original data. Integrity attestation is per-
form in parallel for minimizing the delay for receiving the final result.
If two service providers always give consistent output results on all in-
put data, there exists consistency relationship between them. Other-
wise, if they give different outputs on at least one input data, there is
inconsistency relationship between them. Inconsistency relationship
exist also between those service provider which give similar but not
same results. If the result of service function is 500 then consistency
relationship exist between those service provider whose result is 500
and inconsistency relationship exist when result are different or simi-
lar i.e. 500 and 501.

Definition 1. Two service provider give results r1 and r2 , consistency
link exist between them only when r1=r2 or between the threshold
value defined by a user.

Portal node is responsible for taking a users request and provide a
verified result to user. For an incoming tuple di, the portal node may
decide to perform integrity attestation with probability pu. If the
portal node decides to perform attestation on di, the portal node

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 430

Volume-4, Issue-7, July-2015 • ISSN No 2277 - 8160

first sends di to a pre-defined service path p1->p2 . . . ->pl provid-
ing functions f1->f2. . . ->fl. After receiving the processing result for
di, the portal replays the duplicate of di on alternative service path(s)
such as p1’-> p2’. . . ->pl’, where pj’ provides the same function fj as pj.
The portal may perform data replay on multiple service providers to
perform concurrent attestation. After receiving the attestation results,
the portal compares each intermediate result between pairs of func-
tionally equivalent service providers pi and pi’. If pi and pi’ receive the
same input data but produce different output results,

We can say that pi and pi’ are inconsistent. Otherwise, we say that pi
and pi’ are consistent with regard to function fi.

Figure 4: Per function consistency graph.

Figure 5: Global inconsistency graph.
Definition 2. A consistency link exists between two service providers
who always give consistent output for the same input data during
attestation. An inconsistency link exists between two service provid-
ers who give at least one inconsistent output for the same input data
during attestation.

Construct the per function consistency graph and capture the con-
sistency relationship between service providers. Figure 4 shows the
per function consistency graph. Service provider node p1, p2 and p3
are consistent with each other and p4 are inconsistent with all others
in function f1. If two service provider consistent for the result of one
function, it is not necessary that they are consistent for other func-
tion. Service provider node p4 is malicious for function f1 and trusted
for function f2.

Definition 3. A per-function consistency graph is an undirected graph,
with all the attested service providers that provide the same service
function as the vertices and consistency links as the edges.

Global inconsistency graph are used to capture the inconsistent be-
havior. Inconsistency link exist between those service provider who
give different result for the result for same input. We can derive more
comprehensive inconsistency relationships by integrating inconsist-
ency links across all functions.

Definition 4. The global inconsistency graph is an undirected graph,
with all the attested service providers in the system as the vertex set
and inconsistency links as the edges.

Portal node is responsible for creating and maintaining the per func-
tion consistency graph and global inconsistency graph. Portal node
perform user authentication and communication between user and

the service provider perform by portal node. Portal node verify the
result of different service provider node and identify the malicious
service provider.

4.3 Integrity Attestation Scheme
1. Consistency graph analysis: We first examine per function consist-
ency graphs to pinpoint malicious service providers. The consistency
links in per-function consistency graphs represent that the service
provider trusted for this function. If the service provider trusted for
specific service function they form a clique. Service provider nodes in
clique are treated as a trusted service provider for this function. For
example, in fig. 4, p1, p2 and p3 are benign service providers and they
always form a consistency clique. RunTest[10], developed a clique-
based algorithm to pinpoint malicious service providers. If we assume
that the number of benign service providers is larger than that of the
malicious ones, a benign node will always stay in a clique formed by
all benign nodes, which has size larger than k/2, where k is the num-
ber of service providers providing the service function. The nodes out-
side side of a clique are malicious.

2. Inconsistency graph analysis: Inconsistency graph contains all the
inconsistency link. Global inconsistency graph is created by all the
node which is outside of the clique. Global inconsistency graph shows
the behavior of attacker, whether it is aggressive or partial attacker.
Global inconsistency graph analysis is done by following condition i.e.
service provider node pi is malicious if and only if

 Epi>=Cmin………………(1)

Where Epi is the incident edges of service provider node i and Cmin is
the minimum size of clique into all per function consistency graph. In
the figure 5 we check for the node p4, the number of connecting edg-
es are 4 and the minimum size of clique into all function are 3, then
p4 is malicious services provider because 4>=3 condition is true. If we
check for the node p1 then connecting edges are 1, then 1>=3 condi-
tion is false, so the service provider node p1 is trusted.

6. IMPLEMENTATION AND RESULTS
We have implement this proposed approach on a Hadoop Ma-
pReduce and tested it on virtual system created by Oracle Solaris
Zone technology that uses Intel Core-i5 Series 2.4 GHz processor and
RAM is 4 GB and above. Virtual cloud computing environment is cre-
ated by creating 10 multiple virtual systems within a single system.
Figure 6 shows the architecture of Hadoop MapReduce technology in
oracle solaris operating system.

Figure 6: Architecture of Hadoop in Oracle Solaris Zone
technology.

NameNode are act as a portal node, all DataNode are serve as appli-
cation service provider(ASPs) and secondary NameNode are used to
maintain logs. All these nodes are connected to virtual switch. Dif-
ferent ASPs(DataNodes) are perform the data processing through
MapReduce programming. MapReduce framework is very popular
for processing Big data in distributed environment. Various previous
techniques are implemented on MapReduce framework for detecting
malicious service providers [10][11][14]. MapReduce framework de-
tects malicious misbehavior by log analysis, and other technique such
as Hatman: Intra-cloud Trust Management for Hadoop and Trusted
MapReduce Infrastructure.

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 431

Volume-4, Issue-7, July-2015 • ISSN No 2277 - 8160

Processing Application runs on the 8 DataNodes and their output
are stored in HDFS. We have implemented an algorithm that run on
a NameNode that is portal node that take input from HDFS and ver-
ify their output. Results of different service provider are stored on
the Hadoop Distributed File System, these result are access by portal
node for verification purpose. Portal node is responsible for verifica-
tion of integrity of results. Portal node take the results from different
ASPs verify them and identify malicious service provider, then give
correct result to user in milliseconds.

Different MapReduce program as a service function run on various
DataNodes. Approximately 1000 lines MapReduce code implement
for result comparision are run on a NameNode. In this code, output
of various service functions is taken from HDFS and compares the
result. In this implementation we use matrix implementation of con-
sistency and global inconsistency graph. If two service providers give
same result then give 1 otherwisw 0. In figure 7different application
service provider provides three different function and 1 represent that
the result of DataNode are same as other DataNodes. In this value of
different service provider for different function are 1 means there is
no malicious service provider and this algorithm only find minimum
size of clique in this case. In the figure 8 service provider node p2 and
p6 are malicious because its value for different service function is 0,
which means it value does not match to other. According to the con-
dition 1 it identify as a malicious. This technique also identify partial
malicious service provider. In figure 9 service provider node p3, p5
and p7 identify as a malicious service provider because it trusted for
some function and malicious to other function.

Figure 7: Detection technique when all service provider
node are trusted.

Figure 8: detection scheme detect malicious service pro-
viders.

Figure 9: Detection technique detect partial malicious
service providers.

CONCLUSION
In this paper we have proposed an integrity attestation technique
for detecting malicious service provider in Hadoop MapReduce. This
technique employs attestation graph model and consistency incon-
sistency relationship for detecting malicious service providers. This
technique can detect malicious service provider as well as partial ser-
vice provider efficiently and effectively in milliseconds.

REFERENCES 1. Amazon Web Services, http://aws.amazon.com/, 2015. | 2. Google App Engine, http://code.google.com/appengine/, 2015. | 3. Software as
a Service, http://en.wikipedia.org/wiki/Software as a Service, 2015. | 4. G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services Concepts,
Architectures and Applications (Data-Centric Systems and Applications). Addison-Wesley Professional, 2002. | 5. T. Erl, Service-Oriented

Architecture (SOA): Concepts, Technology, and Design. Prentice Hall, 2005. | 6. Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi, Mastering cloud computing McGrow Hill
Education Pvt limited. | 7. S. Berger et al., “TVDc: Managing Security in the Trusted Virtual Datacenter,” ACM SIGOPS Operating Systems Rev., vol. 42, no. 1, pp. 40-47, 2008. | 8. T.
Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, You Get Off My Cloud! Exploring Information Leakage in Third-Party Compute Clouds,” Proc. 16th ACM Conf. Computer
and Communications Security (CCS), 2009. | 9. L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,” ACM Trans. programming Languages and Systems,
vol. 4,no. 3, pp. 382-401, 1982. | 10. J. Du, W. Wei, X. Gu, and T. Yu, “Runtest:Assuring Integrity of Dataflow Processing in Cloud Computing Infrastructures,” Proc. ACM Symp.
Information, Computer and Comm. Security (ASIACCS),2010. | 11. J. Du, N. Shah, and X. Gu, “Adaptive Data-Driven Service Integrity Attestation for Multi-Tenant Cloud Systems,”
Proc. Int’l Workshop Quality of Service (IWQoS), 2011. | 12. Scalable Distributed Service Integrity Attestation for Software-as-a-Service Clouds by Juan Du, Member, IEEE, Daniel
J. Dean, Student Member, IEEE, Yongmin Tan, Member, IEEE, Xiaohui Gu, Senior Member, IEEE, and Ting Yu, Member, IEEE.,IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS, VOL. 25, NO. 3, MARCH 2014. | 13. Hatman: Intra-cloud Trust Management for Hadoop by Safwan Mahmud Khan Kevin W.Hamlen, Department of Computer Science,
University of Texas at Dallas USA. | 14. B. Raman et al., “The SAHARA Model for Service Composition Across Multiple Providers,” Proc. First Int’l Conf. Pervasive Computing, Aug.
2002. | 15. X. Gu et al., “QoS-Assured Service Composition in Managed Service Overlay Networks,” Proc. 23rd Int’l Conf. Distributed Computing Systems (ICDCS ’03), pp. 194-202,
2003. | 16. TMR: Towards a Trusted MapReduce Infrastructure, Anbang Ruan, Andrew Martin Department of Computer Science 2012 IEEE Eighth World Congress on Services.
| 17. Toward Detecting Compromised MapReduce Workers through Log Analysis, Eunjung Yoon and Anna Squicciarini Department of Computer Science and Engineering
Pennsylvania State University University Park, USA. | 18. ANALYSIS OF SECURITY THREATS AND PREVENTION IN CLOUD STORAGE: REVIEW REPORT Prakash Kuppuswamy and
Saeed Q Y Al-Khalidi International Journal of Advanced Research in Engineering and Applied Sciences ISSN: 2278, Vol. 3, No. 1, January 2014. | 19. Data Storage Security in
Cloud Computing: A survey, Maulik Dave, Department of Masters in Computer Engineering, LJIET Gujarat Technological University, Ahmadabad- India. International Journal
of Advanced Research in Computer Science and Software Engineering Volume 3, Issue 10, October 2013. | 20. Security as a Service Model for Cloud Environment Vijay
Varadharajan, Senior Member, IEEE, and Udaya Tupakula, Member, IEEE IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 11, NO. 1, MARCH 2014

