Equations of Astroparticles Dynamics.

Ayan Banua
 Vill- Thakurchak P.O.-Dhanyaghar Pin-721643, India

KEYWORDS :

Methodology:(Part 1)

If two astroparticles(B \&C) (separated at a distance ' r ' respect to the reference frame ' A ') move to their centre of mass due to gravitational field and a man sited in ' A ' reference frame measures their velocities as ' u ' \& ' v '. Now I will consider that ' C ' is moving at a speed ' X ' respect to ' B '. Then at a time t respect to A, a person sited at B will observe that C closer to a distance $\mathrm{xt}^{\prime}\left(t=\frac{t^{`}}{\sqrt{\left(1-\frac{u^{2}}{c^{2}}\right)}}\right.$ respect to $\left.\mathbf{B}\right)$

Next a person sited at A will observe that the distance between $B \& C$ would be decreased by $(u+v) t$. Then we have to consider two
reference frame (A \& C). Here A will observe that this distance moved at a velocity v and the distance is attached to C . Now a person sited at C will observe that A is moving but the distance is fixed. So in this time if we consider the distance respect to C that will be
$\{(u+v) t\} / \sqrt{ }\left(1-\frac{v^{\wedge} 2}{c^{\wedge} 2}\right)[$ Because according to C, A
is moving at a speed v]
At last if we transform this length respect to B, it will be $\frac{(u+v) t}{\left.\sqrt{\left(1-\frac{v^{\wedge}}{c^{\wedge} 2}\right.}\right)} \sqrt{ }\left(1-\frac{x^{2}}{c^{2}}\right)$.

At last we can write
$\mathrm{xt}=\frac{(\mathrm{u}+\mathrm{v}) \mathrm{t}}{\sqrt{\left(1-\frac{v^{\wedge} 2}{c^{\wedge} 2}\right)}} \sqrt{ }\left(1-\frac{x^{2}}{c^{2}}\right)$
or $\quad \mathrm{x}=\frac{(\mathrm{u}+\mathrm{v})}{\left.\sqrt{\{ }\left(1-\frac{u^{2}}{c^{2}}\right)\left(1-\frac{v^{2}}{c^{2}}\right)+\frac{(\mathrm{u}+\mathrm{v})^{2}}{c^{2}}\right\}}$

Part 2: At first I will consider that rest
masses of $B \& C$ are $\mathbf{m o}_{0} \& \mathrm{~m}^{`}{ }_{\mathrm{o}}$ According to the Ayan Banua's theory, force acting on

C according to B will be $-\frac{\mathrm{m}^{`}}{\left(1-\frac{x^{2}}{c^{2}}\right)^{\wedge} \frac{3}{2}} \frac{d}{d t} \frac{d r}{d t}$
[As r is decreasing]
to B will be $\frac{G \mathrm{~m}^{`} \mathrm{om}_{0}}{r^{\wedge} 2 \sqrt{ }\left(1-\frac{x^{2}}{c^{2}}\right)}$
Equaling them
$-\frac{\mathrm{m}^{`}{ }_{0}}{\left(1-\frac{x^{2}}{c^{2}}\right)^{\wedge} \frac{3}{2}} \mathrm{~d} \frac{d r}{d t}=\frac{G \mathrm{~m}^{`}{ }^{\circ} \mathrm{m}_{0}}{r^{\wedge} 2 \sqrt{ }\left(1-\frac{x^{2}}{c^{2}}\right)} \mathrm{dr} \frac{d t}{d r}$
Or $-\frac{\frac{d r}{d t} d\left(\frac{d r}{d t}\right)}{\left(1-\frac{x^{2}}{c^{2}}\right)}=\frac{G \mathrm{~m}_{0}}{r^{\wedge} 2} d r$
Intregating both side, we can getg
$\mathrm{C}^{\wedge} 2 \ln \left[\frac{1}{\left(1-\frac{x^{2}}{c^{2}}\right)}\right]=\frac{2 G \mathrm{~m}_{0}}{r}+\mathrm{k} \quad[\mathrm{k}=$ I.C. $]$
At a distance $\mathrm{r}=\infty$, we get $\mathrm{x}=0$ and $\mathrm{k}=0$

So the final equation is
$\mathrm{C}^{\wedge} 2 \ln \left[\frac{1}{\left(1-\frac{x^{2}}{c^{2}}\right)}\right]=\frac{2 G \mathrm{~m}_{0}}{r}$
Where $\mathrm{x}=\frac{(\mathrm{u}+\mathrm{v})}{\sqrt{\{ }\left\{\left(1-\frac{u^{2}}{c^{2}}\right)\left(1-\frac{v^{2}}{c^{2}}\right)+\frac{(\mathrm{u}+\mathrm{v})^{2}}{c^{2}}\right\}}$

