

Research Paper

Electrical Engineering

An Optimized System Configuration Design for Mini Solar Power Plants: A Conceptual Analysis

Dr Ashwini Mathur

G-3,G-Block ,Makadwali road,Near first step school,Vaishali nagar,Ajmer(Rajasthan)

ABSTRACT Since the beginning of life on earth, the energy that was received by all living forms was radiated from the sun. The Sun is a reliable, non-polluting and inexhaustible source of energy. Photovoltaic is a way by which energy from the sun can be directly used for power generation. This method for electricity generation causes no environmental pollution, has no rotating or moving parts. Photovoltaic are also multi functional. It can generate and operate illuminations, pump water, operate any house hold equipments and appliances, can operate any electrical gadgets and communication equipment. The photovoltaic finds its wide application in village electrification in the developing countries and electricity production for the buildings, commercial areas and industrial sector in cities. In the cost optimization process, HOMER software selects one system configuration out of all configurations generated in the simulation process that satisfies all technical constraints and has the lowest life cycle cost.

KEYWORDS : Optimization, simulation, cost of energy, net present cost.

I Introduction:

The radiant heat and light energy from the Sun is called as solar energy. This is the most readily and abundantly available source of energy. Since ancient times this energy has been harnessed by humans using a range of innovations and ever-evolving technologies. The earth receives more energy in just one hour from the sun than what is consumed in the whole world for one year. This energy comes from within the sun itself through process called nuclear fusion reaction. The practical sites analyzed for different Solar power locations as per there production ranges are:

(a) Tilonia Village Ajmer, Rajasthan 50KW Solar PV Power

Plant: During 2006-07, the Government of India notified .The Rural Electrification Policy, which lay down the broad framework for rural electrification programs in the country. The Rural Electrification Policy has laid down that in villages/ habitations where grid connectivity would not be feasible or not cost effective, off-grid solutions based on stand-alone systems may be taken up for supply of electricity. Solar stand alone is one such system. India receives solar energy equivalent to over 5,000 trillion KWh per year. The daily average solar energy incident varies from 4-7 KWh per square meter depending upon the location. The annual average global solar radiation on horizontal surface, incident over India is about 5.5 KWh per square meter per day. There are about 300 clear sunny days in most parts of the country. Tilonia Ajmer (Rajasthan) is ideally suited for exploiting the solar potential for electrification with the available technology. The approximated data collected is utilized for designing optimal configuration of plant is realized using software.

(b) Lathi Village Pokaran, Jaisalmer 1 MW Solar PV Power Plant: This plant is being installed by LANCO infratech Ltd.. Lanco solar has signed many power purchase agreement for higher capacity installations with other states of Rajasthan. The approximated data collected is utilized for designing optimal configuration of plant is realized using software.

(c) **Bap Village Phalodi, Jodhpur 5 MW Solar PV Power Plant:** The project activity consists of a 5MW solar plant at Bap Village of Phalodi Tehsil, Jodhpur District in Rajasthan. Annual power generation from the plant is expected to be 9,392 MWh/year. The electricity generated from project activity will be supplied to grid (Integrated Northern, Eastern, Western and North Eastern Grid). The purpose of the project activity is to generate electrical energy utilizing solar energy and export the generated electricity to the regional grid. In absence of the project activity equivalent amount of electricity would have otherwise been generated by existing and new power plants connected to the emission intensive electricity grid. Thus the project activity would result in avoidance of Greenhouse gas emissions and contributed to mitigation of global warming. lage, various combinations have been obtained of solar system with SPV, Diesel, batteries and convertors from the HOMER Optimization simulation software. The best optimal system is shown in figure 1.1. results table.

Servitivity Res.	A	dinasilo (Bendt	{ 								
able dick on	a igida	n beker t	te stadai	0.00	Categoried P Creat Look							
TORE	PV RWJ	Labe: 3(w)	1.925	Coev \$hut)	turial Deutoi	Operating Cost (\$/(n)	Tutal NPC	CEE BAWA	fee.	Direct	Label Baci	
TAPE	.56	.90	- 4	50	\$5500	2.67	\$ 85,438	C 4EP	1.2	47,004	1122	
TOBE	50	- 40	40	50	\$55.00	78.697	1,063,088	0.489	18.	47,304	1,132	
TOBE	00	- 90	46	10	\$543,000	25,305	\$ 366,495	0.418	4.7.	67.548	1.099	
7000	50	.00	- 40	50	\$543,000	25,305	\$ 306,436	0.478	12	47.540	1,000	
TOBE	50	-90	- 56	50	\$551,000	2510	\$571,238	0413	0.5	47,837	5,000	
7680	50	-90	- 56	50	\$551,000	25,543	\$ 671,294	0.413	125	47,637	5,000	
7000	50	:50	32	50	\$107,000	22,479	108280	0.04	4.75	\$1,517	6,000	
7000		50	12	50	\$527,000	27.ATB	\$ 170,251	0.410	821	\$1,717	8,000	
1000	50	:50	24	50	\$1719,000	21.541	\$ 522,195	0.437	8.20	53,596	8,771	
7080	50	.90	24	50	\$519,300	31.541	\$522,195	0.437	\$20.	59.9%	6,771	
70BB	50	.90	8	50	\$553,000	34,302	\$ 541,500	0.445	809	59,729	8.090	
7000	50	30	. 6	50	\$903,000	24,302	\$ 941,500	0.446	8.09	89,723	9,000	
7000	50	50	10	50	\$511,000	22,708	\$ 541,300	0.447	415	54.100	7,230	
TOPE	. 10	50	16	50	\$511,000	33,798	\$ 941,903	0.447	615	\$4,100	7.2%	

Figure 1.1: Optimization Result Details

HOMER uses the total NPC as its main selection tool. All the possible solar system configurations are listed in ascending order of their total NPC in the figure shown above. Costs taken in optimization table are in Indian rupees and the technical and economical details of all the configurations of the solar systems from the optimization process are shown in detail in figure 1.1 where the best possible combination of SPV, DG, converter and batteries is highlighted in blue and the next best possible combination is marked with a red coloured box. As per the optimization results an optimal combination of renewable energy technology system components are a 50KW PV, 50KW generator, 40 Trojan T-105 Batteries, 50KW Inverter and a 50KW Rectifier with a dispatch strategy of cycle charging. The total NPC, Capital cost and cost of energy for such a solar system are Rs. 863,488, Rs. 535,000 and Rs. 0.409/KWh, respectively. This shows the cash flow summary based on the components selected in the system. The batteries have a low impact on the capital and O&M costs. PV and converter share the maximum portion of the capital investment. The replacement cost for generator and PV cell is higher. Replacements occur majorly in the 15th and 20th year of the system, mostly for changing batteries and replacing PV Panels. Other replacements and repair of electronics items is required time to time. All these cash flow calculations do not consider any discounts, government funding or subsidies.

(B) Lathi Village, Jaisalmer 1 MW Solar PV Power Plant: For Lathi village Jaisalmer, various combinations have been obtained of solar system with SPV, Diesel, batteries, Grid and convertors from the HOMER Optimization simulation software. The best optimal system is shown in figure 1.2.

II Optimization & Analysis Results:

(A) Tilonia Village, Ajmer 50 KW Solar PV Power Plant: For Tilonia Vil-

Sendi-ly Rends	Upton	cutor N	interes								
Dudde skil on a union below for simulaturi results. Caregoreed '4' Overallpent. Data											
17000	awt.	8563	T-105	Kank BINT	Get DWg	Linkini Capite	Cont B/yel	Total MPC	CON BASENING	Res. Frac	Capacity
17 2	THE	1.1.1	11 - 1 A	1000	-188	A CRIMIN	415.529	11.152.240	E TAD	15	11.00
1.4	3000			1000	1800	\$ 5,300,000	<22.52b	\$3392.250	6.143	0.52	0.00
170 3	1000	100		1,000	1800	\$ 9,000.000	437.334	\$3,403,901	0.146	0.92	0.00
170 0	3000	100		1000	1800	8 8,000,000	-412,538	\$1411.97	1.0.146	3.62	6.03
140 8	1000	200		1000	1800	\$ 3,102,000	-49.798	\$143.45	0.150	152	6.00
470 E	1000	200		1.000	1000	\$ 5,100,000	426,726	\$243.45	0.150	3:02	0.03
17 02	1000		160	1099	1866	11,000,0000	-406.229	8 3 500 211	0.159	9.52	6.00
17 #2	1000		100	1000	1800	\$ 5,000,000	-400.223	\$1500.711	0.150	3.92	6.00
170 8	1000	300		1000	1800	\$ 9,200,000	-840.33*	\$3571.014	6.153	0.52	6.00
140 E	10000	200		1000	1000	\$ \$,200,000	-44,321	\$357.010	6.752	2.92	6.00
14082	1000	100	188	1000	1800	\$ 9,100,000	421.822	\$ 3579.8%	0.154	0.52	0.00
ATOBS.	.1000	100	100	1000	1800	13300.000	-421,322	11523,000	6.154	0.52	0.00
170 8	1000	400		1000	1800	41,000,000	-60.827	4 1650548	0.162	0.52	0.00
470 E	1000	400		1090	1800	\$ 9,301000	-441,357	\$3450.588	0.157	3.52	0.00
4700R	1000	200	100	1000	1000	\$ 9,200,000	-400,421	\$1000.400	0.157	3.52	0.00
17085	1000	200	100	1000	1000	\$ 9,200,000	405,421	\$ 1,659,400	0.167	0.82	0.00
17 82	1000		.200	1000	1800	\$ 3,100,000	424,906	\$ 1,668,272	6.152	3.52	6.03
17 100	1000		200	1000	1800	15100000	-424.306	1 3 608 272	0.157	9.52	0.00
140 8	1000	800		1000	1000	\$ 9,400,000	441.576	\$1700.122	0.160	0.62	6.00
475 E	1000	500		1000	1800	\$ 3,431000	-647.536	\$ 2730.622	0.168	0.52	0.00
17008	3000	300	100	1000	1000	\$ 3,300,000	-05.321	\$ 2730.075	0.160	352	0.00
17005	1000	200	100	1000	1800	\$ 9,300,000	408.021	\$3,738,875	C.160	3.92	0.00
14002	3000	100		11000	1000	11.000.000	438,506	1 1747.577	81.767	342	8.94
4.708日	1000	100	200	1000	1000	19200000	428.508	13747.827	0.787	0.52	0.00
170 8	1000	000		1.000	1000	\$ 5,500,000	445,135	\$ 1 000,070	0.163	302	0.00
170 2	1000	650		1000	1866	11500000	-46,128	1100476	0.162	0.52	0.00
ATOME.	1000	400	100	1000	1000	\$ 2.400.000	436.528	\$ 1003.528	0.164	1.52	0.00
14088	1000	400	100	1000	1800	\$ 9,400,000	406.528	\$ 1012525	C.164	322	6.00

Figure 1.2 Optimization Results Details

HOMER uses the total NPC as its main selection tool. All the possible solar system configurations are listed in ascending order of their total NPC in the figure shown above. Costs taken in optimization table are in Indian rupees and the technical and economical details of all the configurations of the solar systems from the optimization process are shown in detail in figure 1.2, where the best possible combination of SPV, DG, grid, converter and batteries is highlighted in blue and the next best possible combination is marked with a red coloured box. As per the optimization results, an optimal combination of renewable energy technology system components are a 1000KW PV, 1000 KW, 1000KW Inverter and a 1000KW Rectifier. The total NPC, Capital cost and cost of energy for such a solar system are Rs.3,332,350, Rs.8,900,000 and Rs.0.143/KWh, respectively. PV and converter share the maximum portion of the capital investment. The replacement cost for PV cell and converter is higher. Replacements occur majorly in the 20th year of the system, mostly for changing batteries, maintaining generator and replacing PV panels. All these cash flow calculations do not consider any discounts, government funding or subsidies.

(C) Bap Village, Jodhpur 5 MW Solar PV Power Plant: For Bap village Jodhpur, various combinations have been obtained of solar system with SPV, diesel, batteries, grid and convertors from the HOMER Optimization simulation. The best optimal system is shown in figure 1.3.

Gorolen's Results	Cylin	iotice (heide (
Double clicit on a sp	-	eseta	inde					1 64	benege	a thread	Lond .	Des	- 180
17005	IOM	3EH 3%)	1-16	Cotty #141	6-12 (CVP)	Capital	Contribing	Taul	100	Net Purchasen producys	Dunit (L)	CEN Pro	1
17 02	3000		1000	NUC		152 110 101	481.001	I COMMON	6.24	- CAR 192			
17 80	5000	_	0000	\$000	3008	1.12,530,000	-451,001	145,456,800	3,274	4.566.142			
17 80	500		0000	5000	5008	\$10,530,000	453,901	\$ \$5,0%,000	8.574	2,596,192	-		
任 # 周辺	500		1000	5000	2508	\$52,500,000	462,921	\$ \$6,636,500	8,24	2566152			
17 80	5000		6000	\$000	2008	\$ \$2,500,808	-453,001	\$ 45,636,600	8.32+	2,596,182			
14 7 日日	5005		8000	3000	1508	1,72,533,900	453,905	1.45,6%,000	8,574	2,556,192			
f . 00	500		0000	5000	1008	\$52,500,000	452.00	845708112	8.95	2506.700			
1 TOBE	5000	1200	8000	9000	1008	\$ \$3,530,000	49,375	\$ 47,492,544	8.300	2,516,192		2	
HTORE.	5000	1300	10000	\$000	2508	\$ \$1,530,888	465.575	\$ 47,492,344	8.105	0.516.192			
14TOBE	500	188	1000	5000	3008	\$5550.000	40.95	\$ 47,452,544	134	2.5%152			
17080	5000	1300	0000	3000	2008	152,500,000	49.95	8 47,432,314	8.36	2,896,192			
HTODE	5000	1300	1010	5000	2008	\$ 50,500,000	469,975	\$ 17,492,101	8.280	2,556,192		3	
117000	5000	1203	1000	3000	1508	\$72,500,000	40.95	112,455,544	8.300	2,5%1102			
14TOBE	3000	1300	MIN.	9000	1008	\$53,530,000	407.00	84/528425	13,311	2,503,439	1.002	P.	
1 TOBE	5000	2300	8000	\$000	4008	\$ 51,530,000	+05,000	\$ 10,297,688	8.287	2,536,192		2	
17080	5000	2300	8000	5000	3560	\$54,500.000	45.99	\$ \$1,297,688	8.907	0,596,192		3	
147088	500	290	0000	300	3008	\$54,530,000	46.30	\$40,202,006	30.82	2,696152			
TTOBE	5000	2900	0000	5000	2508	\$ 54,530,000	485,900	8 40.257,000	8.367	2,555 (32)			
117000	5000	2200	1000	5000	2008	\$54,505,000	-45,969	\$ 49,297,688	18.901	2,596,187			
HTORE	500	2900	0000	5000	1101	\$54,520,000	485,305	4 45.207.000	8.367	2,595,192		3	
14OBE	6000	.2800	1010	5000	1008	\$54,580,908	454,520	\$ 46,201 (000)	8.367	2556,788		2	
TTOBE	5000	3000	8000	\$300	1008	\$ 05,530,000	101,003	\$ \$5,085,212	8.265	0,598,150		3	
IT TORE	5400	3800	1008	-500	3508	\$15,530,600	-603.903	\$ \$3,083,232	8.302	2,596,152			

Figure 1.3: Optimization Result Details

HOMER uses the total NPC as its main selection tool. All the possible solar system configurations are listed in ascending order of their total NPC in the figure shown above. Costs taken in optimization table are in Indian rupees and the technical and economical details of all the configurations of the solar systems from the optimization process are shown in detail in figure 1.3, where the best possible combination of SPV, DG, grid, converter and batteries is highlighted in blue and the next best possible combination is marked with a red coloured box. As per the optimization results, an optimal combination of renewable energy technology system components are a 5000KW PV, 4000 KW Grid, 8000 Trojan T-105 Batteries, 5000KW Inverter and a 5000KW Rectifier with a dispatch strategy of cycle charging. The total NPC, Capital cost and cost of energy for such a solar system are Rs.46,696,600, Rs.52,500,000 and Rs.0.374/KWh, respectively .Figure 1.3 shows the cash flow summary based on the components selected in the system. PV, converter and batteries share the maximum portion of the capital investment. PV and batteries has maximum replacement cost. Replacements occur majorly in the 20th year of the system, mostly for changing batteries, replacing PV panels and electronic items. All these cash flow calculations do not consider any discounts, government funding or subsidies.

III Summary and conclusion:

Individual analysis of mini solar power plants is done using software and optimal cost system is designed for different specific location .For Off-Grid rural electrification, since the last decade with the help of renewable energy sources (RES) has become a cost-effective and convenient option for areas where grid connection is neither available nor feasible in the near future. The software has proved a valuable tool in this study especially because of its ability to simulate numerous components and load combinations. The graphs created by HOMER make the simulation's results clear and easy to understand. The various results obtained for different projects for designing an optimal system configuration are:

Tilonia Village, Ajmer 50 KW Solar PV Power Plant:

As per the optimization results an optimal combination of renewable energy technology system components are a 50KW PV, 50KW generator, 40 Trojan T-105 Batteries, 50KW Inverter and a 50KW Rectifier with a dispatch strategy of cycle charging. The total NPC, Capital cost and cost of energy for such a solar system are Rs.863,488, Rs.535,000 and Rs.0.409/KWh, respectively.

Lathi Village, Jaisalmer 1 MW Solar PV Power Plant:

As per the optimization results, an optimal combination of renewable energy technology system components are a 1000KW PV, 1000 KW, 1000KW Inverter and a 1000KW Rectifier. The total NPC, Capital cost and cost of energy for such a solar system are Rs.3,332,350, Rs.8,900,000 and Rs.0.143/KWh, respectively.

Bap Village, Jodhpur 5 MW Solar PV Power Plant:

As per the optimization results, an optimal combination of renewable energy technology system components are a 5000KW PV, 4000 KW Grid, 8000 Trojan T-105 Batteries, 5000KW Inverter and a 5000KW Rectifier. The total NPC, Capital cost and cost of energy for such a solar system are Rs.46,696,600, Rs.52,500,000 and Rs.0.374/KWh, respectively.

REFERENCES

1. Kolhe, M., Kolhe, S., Joshi, J.C. (2002) 'Economic viability of stand-alone solar photovoltaic system in comparison with diesel-powered system for India', Energy Economics 24(2), pp. 155–65. 2. Bates, J., Wilshaw, A. (1999) Stand-alone PV systems in developing countries, Technical report, The International Energy Agency (IEA), Photovoltaic Power Systems (PVPS) programme. | 3. Rana, S., Chandra, R., Singh, S.P., Sodha, M.S. (1998) 'Optimal mix of renewable energy resources to meet the electrical energy demand in villages of Madhya Pradesh', Energy Conversion and Management 39(3–4), pp. 203–16. | 4. Nouni, M.R., Mullick, S.C., Kandpal, T.C. (2006) 'Photovoltaic projects for decentralized power supply in India: a financial evaluation' Energy Policy 34, pp. 3727–38. 5. Koutroulis, E., Kolokotsa, D., Potirakis, A., Kalaitzakis, K. (2006) 'Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms', Solar Energy 80, pp. 1072-88. [6. Rabah, K.V.O. (2005) 'Integrated solar energy systems for rural electrification in Kenya', Renewable Energy 30(1), pp. 23–42. [7. Akella, A.K., Sharma, M.P., Saini, R.P. (2007) 'Optimum utilization of renewable energy sources in a remote area,' Renew Sustain Energy Rev 11, pp. 894–908. | 8. Kaldellis, J.K., Zafirakis, D., Kaldelli, E.L., Kavadias, K. (2009) Cost benefit analysis of a photovoltaic-energy storage electrification solution for remote islands', Renewable Energy 34, pp. 1299–311. | 9. Moharil, R.M., Kulkarni, P.S. (2009) A case study of solar photovoltaic power system at Sagardeep Island, India', Renewable and Sustainable Energy Reviews 13(3), pp. 673-681.