
GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 34

Volume-4, Issue-5, May-2015 • ISSN No 2277 - 8160

Research Paper Technology

Iterative Precedence of Software Requirements Through
Genetic Algorithm Involving System and Customer

Interaction

Tejal Sharma CSE , Mtech

Mahesh Singh Asst. Professor CSE Department, Advanced Institute of Technology &
Management

This paper represents a methodology for iterative precedence of software requirements with genetic algorithm
with customer interaction . This approach maximizes the value delivered to clients and accommodates changing
requirements. The proposed approach attempts to quantify the quality of requirements to provide a measurement this

is representative of all quality criteria identified for a specific software project.

ABSTRACT

KEYWORDS : Requirement prioritization, iterative genetic algorithm ,desirability factor
,search techniques.

Introduction
Software industry plays an integral role in our day to day life and in
growth of industry. Its presence is quotidian; people rely on software
for many purposes such as safety critical system, national securi-
ty , financial system etc. Every industry has a specific requirements
, methods and they operate based on them. For eg, a toy company
has its own methods which are prioritized according to the needs of
customer. In this we aim to develop a system that takes requirements
of users as input and gives the sets of prioritized requirements as out-
put. After we specify the requirement , we parse them to determine
meaningful requirement by applying quality and sub-attributes to
the requirement. These are applied to the manager manually who is
responsible for the delivery of project. The system in the following re-
search paper will calculate Desirability factor (determines importance
of parsed requirement) ; lower desirability higher precedence. After
the system has given prioritization we calculate the Disagreement
factor by forming pairs. Now we will apply mutation and crossover.
The final output will give the best set of prioritized requirement .

Background work
Many techniques used in the current prioritization approach which
assigns a rank to each requirement in a candidate set according
to specific criteria such as value of requirement for the customer or
requirement development cost. The rank of requirement can be ex-
pressed as its relative position with respect to other requirement in
the set such as binary search procedure. Once all features are iden-
tified ,each requirement is evaluated against each feature using a
simple binary scale (i.e., 0 or 1). Requirements that satisfy the highest
number of features would expose a higher quality for that particular
quality attribute. Once all requirement are evaluated the desirability
factor is computed to fuse all measurement into one compact unit
which is standard og all quality attribute. This compact value is com-
puted by using a set of desirability functions that take into account
consideration the priority of each quality attribute. Therefore the re-
sulting priority of each requirement is derived from the decision mak-
ers goals for a specific software project. This result in a requirement
prioritization approach based on how well requirement meet quality
attributes and how those quality attributes are for the identified soft-
ware project.

Though the binary scale to rank requirements is a practical approach
but it is not good for features that do not lend themselves for binary
assessment.

Solution approach
The prioritization approach we propose aims at minimizing the disa-
greement between a total order of prioritized requirements and the
various constraints that are either encoded with the requirements
or that are expressed iteratively by the user during the prioritization
process. We use an interactive genetic algorithm to achieve such a
minimization, taking advantage of interactive input from the user

whenever the fitness function cannot be computed precisely based
on the information available. Specifically, each individual in the pop-
ulation being evolved represents an alternative prioritization of the
requirements. When individuals having a high fitness (i.e., a low dis-
agreement with the constraints) cannot be distinguished, since their
fitness function evaluates to a plateau, user input is requested inter-
actively, so as to make the fitness function landscape better suited
for further minimization. The prioritization process terminates when a
low disagreement is reached, the time out is reached or the allocated
elicitation budget is over.The application has below functions:	
In this functionality, the developer could type in the requirements
in a text editor OR can input them through a text file. Through this
functionality, the developer would be able to select the genuine re-
quirements by checking them. The extraction of text-based require-
ments will occur through splitting and tokenization of requirements
where a comma (,) or a full-stop (.) occurs in the text-based sentence
input .Once the requirements are extracted, they are verified by the
developer for their validity and then are stored in the database for use
in next calculation.Then we will take the developer input about the
sub-attributes that apply to the individual requirements through Yes
or No.

The parent attributes and their sub-attributes will be fixed as below.

Once the (Yes/No) input of individual attributes for individual require-
ments has been taken, a matrix a

s below will be generated, where 1 will signify a Yes and 0 will signify
a No.

Then, we will calculate the overall desirability factors of requirements
with respect to the control matrix and formulae given below.

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 35

Volume-4, Issue-5, May-2015 • ISSN No 2277 - 8160

The desirability values of first 5 attributes, per requirement will be cal-
culated based on the below formula.

The desirability values of the last attribute (Penalty), per requirement
will be calculated based on the below formula.

The requirements will be prioritized in the increasing order of desira-
bility values. This prioritization will be of developer’s perspective.

Then the prioritization will be done from customer’s perspective.
Here, we will take the requirements prioritization input from 6 (fixed)
users as below:

Then, we will compute the disagreement factor by comparing the pri-
oritization of customer & developer and counting the pairs which are
different.

Then, in case, any of the disagreement counts of 5 imaginary users
(Pr1, Pr2, Pr3, Pr4, Pr5) are equ1. We will compare both the user prior-
itizations (like Pr1, Pr2) which are equal in disagreement counts.

2. We will then extract out the requirement pairs like (R1, R2) which
are different.

3. In order to make the disagreement count unequal we will reverse
the pairing of different pairs within the same prioritization like chang-
ing (R1, R2) to (R2, R1) and then re-calculate the disagreement count.
This pairing will be reversed with the help of a user input wherein the
user will be asked about the reversal through a Yes/No question in a
dialog box. Only when the user approves and agrees to the reversal,
we will reverse the pairs.

All in all, our objective of above step would be to make
the disagreement counts of all the requirements prioriti-
zations of 5 imaginary users as unequal.

Step – 2:
In this step, we will perform the simultaneous processes of Mutation
& Crossover.

Process:
1. Amongst the 5 user prioritizations, we take 2 prioritizations which
have the lowest and second-lowest disagreement counts. For ex: if
the disagreement counts of the 5 prioritizations are like Pr1 = 5, Pr2 =
15, Pr3 = 2, Pr4 = 10, Pr5 = 6, we take Pr3 & Pr1 and apply Mutation &
Crossover operations on them simultaneously.

2. In the Mutation operation, we reverse the pairing of any require-
ment pair like changing (R1, R2) to (R2, R1).

3. In the Crossover operation, we fix-up a split-point in both the re-
quirement prioritizations that we took in the above example and ex-
change the pairs between them. For ex: In context to the above ex-
ample, if the requirements prioritization of Pr3 & Pr1 is:

Pr3: (R1, R2), (R1, R3), (R2, R3), (R2, R4), (R2, R5), (R3, R5), (R4, R5)

Pr1: (R1, R2), (R1, R4), (R2, R4), (R2, R5), (R3, R4), (R3, R5), (R4, R5)

and, we decide the split-point as 3, then after the 3rd pair, we will split
the pairing and exchange the pairs as:

Pr3: (R1, R2), (R1, R3), (R2, R3), (R2, R4), (R2, R5), (R3, R5), (R4, R5)

Pr1: (R1, R2), (R1, R4), (R2, R4), (R2, R5), (R3, R4), (R3, R5), (R4, R5)

Resultant will be:
Pr3: (R1, R2), (R1, R3), (R2, R3), (R2, R5), (R3, R4), (R3, R5), (R4, R5)

Pr1: (R1, R2), (R1, R4), (R2, R4), (R2, R4), (R2, R5), (R3, R5), (R4, R5)

4. Then, we again calculate the disagreement count.

1. We perform Step – 2 till 5 iterations OR up to the point when dis-
agreement count of any prioritization comes out to be 1 (whichever
is earlier)

2. In Step – 2, if the disagreement counts of any prioritizations come
out to be equal, we go to step – 1

3. Finally after 5 iterations, we output and display the user prioritiza-
tion which has the lowest disagreement count and that will be our
best prioritization of the software requirements according to this Ge-
netic algorithm

al, we will make them unequal through the below process.

Conclusion
This tool will help a software organization to identify the require-
ments clearly.It will help in the furnishing of requirements in the most
convenient and appropriate way possible i.e. through text-based and
graphics basedIt will also help the organization to split and extract
the requirements from a specified set of requirements easily by bi-
furcating it from the points of comma and full-stop occurrenceIt will
help the organization to finally extract the best set of prioritized re-
quirements which will enable them to understand the workflow of a
software clearly and develop it efficiently.

REFERENCES 1. Requirements Prioritization Based on Benefit and Cost Prediction: An Agenda for Future Research Andrea Herrmann* , Maya Daneva+ * Uni-
versity of Heidelberg, Faculty of Mathematics and Computer Science, Software Engineering Group, 69120 Heidelberg, Germany1 + University of
Twente, Department of Computer Science, PO Box 217, 7500 AE Enschede, The Netherlands m.daneva@utwente.nl | 2. An evaluation of methods

for prioritizing software requirements Joachim Karlssona,b, *, Claes Wohlinb , Bjo¨rn Regnell c a Focal Point AB, Teknikringen 1E, SE-583 30 Linko¨ping, Sweden b Department of
Computer and Information Science, Linko¨ping University, SE-581 83 Linko¨ping, Sweden c Department of Communication Systems, Lund University, SE-221 00 Lund, Sweden
Received 7 February 1997; revised 5 November 1997; accepted 13 November 1997 | 3. Prioritizing Quality Requirements based on Software Architecture Evaluation Feedback Anne
Koziolek Department of Informatics, University of Zurich, Switzerland koziolek@ifi.uzh.ch | 4. The Effectiveness of Requirements Prioritization Techniques for a Medium to Large
Number of Requirements: A Systematic Literature Review Auckland University of Technology as a Part of the Requirements for the Degree of Master of Computer and Information
Sciences November 2009 School of Computing and Mathematical Sciences | 5. http://link.springer.com/chapter/10.1007/3-540-28244-0_4 | 6. http://www.sciencedirect.com/
science/article/pii/S0950584997000530 | 7. http://link.springer.com/chapter/10.1007/978-3-540-24659-6_36 |

