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The detection of infuential observations has attracted a great deal of attention in last few decades. Most of the ideas of 
determining infuential observations are based on single-case diagnostics with ith case deleted. The Cook's distance is 
most commonly used among the other single-case diagnostics and successfully applied to various statistical models. In 

this article, we propose Cook's distance for the ridge regression estimator of the parametric component in the semiparametric regression model 
to detect infuential observations. We investigate the performance of proposed diagnostic to detect infuential observations by using simulation 
data.
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1.  Introduction 
 
Regression diagnostics consist of a collection of methods used in the identification of 
influential points and multicollinearity. Particularly, the detection of influential observations 
has received a great deal of attention in the statistical literature. Hence a number of statistical 
measures have been proposed to identify influential observations, in which Cook’s distance 
proposed by Cook (1977) is one of the most commonly used influence measures. However, 
most of the regression diagnostics have been related to parametric regression models. 
Diagnostic measures in various nonparametric regression or semiparametric regression 
models are quite rare (Zhang et al., 2007).  
 
In this paper, we examine the influence of observations on the ridge estimator for the vector 
of parameters β in a semiparametric regression model. Consider the following semiparametric 
regression model: 
 
                                n...,,2,1i,)t(fy ii

T
ii  βx                                                     (1) 

 
 where the yi’s are observations, ix  is px1 vector ( np  ), ti is scalar, T

p1 ),...,( β  is a 
vector of unknown parameters, f(.) is unknown function, and i ’s are independent and 
identically distributed random variables with zero mean and variance 2 .  
 
Semiparametric models are more flexible than linear models since they consist of a parametric 
and a nonparametric component. These models are used when the response y linearly depends 
on x, but it is nonlinearly related to t. Hence f(t) represents a smooth unparametrized 
functional relationship. The aim is to estimate β  and nonparametric function f(t) from the 
data  iii t,x,y .  
 
The model in (1) can be written in matrix-vector notation as 
 
                                εfXβy                                                                                            (2) 
 
where T

n1 )y,...,y(y  , T
n1 ))t(f),...,t(f(f , ),...,( n1 ε  and X = T

n1 ),...,( xx  is the n x p 
matrix without any restrained conditions, namely, rank (X) <p or rank (X) = p (ill-conditioned 
or not). 
 
In fact, if X is an ill-conditioned matrix, then the results may not reliable. Many studies do not 
consider the case rank (X)<p, and the situation that the design matrix X is rank-deficient is 
rarely investigated. It is noticeable that ridge estimation not only solves rank-deficient and ill-
conditioned problems, but also presents a new method which can deal with (non)linear and 
semiparametric regression models for rank(X)=p without ill-conditioning (Hu 2005). Hence, 
Hu (2005) proposed ridge estimation of semiparametric regression model. Roozbeh et al. 
(2010) introduced a semiparametric ridge regression estimator for the vector-parameter when 
the matrix XXT  is ill-conditioned. The large condition number of parametric component 
indicates that a ridge regression estimatior can be used for  β . The reduction in 
multicollinearity should be a first step for the effective detection of influential observations. 
 
In this article, the Cook’s distance is defined to detect influential observations on the ridge 
estimator of β  in semiparametric regression. Approximate deletion formula as functions of 
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The Model and Ridge Estimator 
 
In this article, the partial kernel smoothing estimator of β , which attains the usual parametric 
convergence rate n1/2 without undersmoothing the nonparametric component f(.), is used. If  
β  is known, a naturel nonparametric estimator of f(.) is  
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where (.)Wni  is the positive weight function (Roozbeh et al., 2010).  
 
To estimate β  in (2) using kernel weight functions, least square estimator can be used. 
Consider the following objective function: 
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   for 

i=1,…,n. The first-order condition of objective function (4) minimized by the vector β  is 
obtained as: 
 

yXXXβ ~~)~~(=ˆ T-1T                                                                                         (5) 
The properties of the least square estimation of β  depend heavily on the characteristics of the 

XX ~~ T . If the XX ~~ T  matrix is ill-contitioned (close dependency among various  columns of 
XX ~~ T ), the least square estimation produce unduly large sampling variances. As a remedy, Hu 

(2005) suggested to use ridge regression estimator instead of least square estimator. The ridge 
regression estimator of β can be obtained by using following objective function: 
 
 βββXyβXyβ TT k+)~-~()~-~(=)(SS                                                              (6) 
                               
The first-order condition of objective function (6) minimized by the vector β  is obtained as: 
  
 yXIXXβR
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where k is a biasing parameter 0)>(k and  X~ XWI )-( , y~ = yWI )-( . For the model in (2), 
the estimates of β  and f can be written as 
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is examined using proposed diagnostic method. 
 
The Model and Ridge Estimator 
 
In this article, the partial kernel smoothing estimator of β , which attains the usual parametric 
convergence rate n1/2 without undersmoothing the nonparametric component f(.), is used. If  
β  is known, a naturel nonparametric estimator of f(.) is  
 

)-y)(t(W),t(f̂ T
ii

n

1i
ni∑ βxβ



                                                                         (3) 

 
where (.)Wni  is the positive weight function (Roozbeh et al., 2010).  
 
To estimate β  in (2) using kernel weight functions, least square estimator can be used. 
Consider the following objective function: 
 
  )~-~()~-~(=)(SS T βXyβXyβ                                                                          (4)      
 

where )y~,...,y~(=~
n1y , ),...,(=~ T

n
T
1 xxX , j

n

1j
injii y)t(W-yy~ ∑



  and  j

n

1j
injii )t(W-~ ∑ xxx



   for 

i=1,…,n. The first-order condition of objective function (4) minimized by the vector β  is 
obtained as: 
 

yXXXβ ~~)~~(=ˆ T-1T                                                                                         (5) 
The properties of the least square estimation of β  depend heavily on the characteristics of the 

XX ~~ T . If the XX ~~ T  matrix is ill-contitioned (close dependency among various  columns of 
XX ~~ T ), the least square estimation produce unduly large sampling variances. As a remedy, Hu 

(2005) suggested to use ridge regression estimator instead of least square estimator. The ridge 
regression estimator of β can be obtained by using following objective function: 
 
 βββXyβXyβ TT k+)~-~()~-~(=)(SS                                                              (6) 
                               
The first-order condition of objective function (6) minimized by the vector β  is obtained as: 
  
 yXIXXβR

~~)k~~(ˆ T-1T                                                                       (7) 
                                
where k is a biasing parameter 0)>(k and  X~ XWI )-( , y~ = yWI )-( . For the model in (2), 
the estimates of β  and f can be written as 

AyβR ˆ                                                                                                 (8) 
                                

)ˆ-(=ˆ
RβXyWfR                                                                                      (9)  

where   )-()-(k)-()( TT1TT WIWIXIXWIWIXA 
  and W is kernel weights matrix 

( Tabakan and Akdeniz, 2009). 
 
 
Cook’s Distance for Ridge Estimator 
 
In this section, we define Cook’s distance for ridge estimator of β in semiparametric 
regression to gauge the influential observations and express it as function of the 
corresponding residuals and leverages.  
 
3.1. Influence on β̂  
 
Following the study of Walker and Birch (1988), an influence measure for the ith observation 
on β̂  can be defined as a type of Cook’s distance for ridge regression  
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where T1T ~)k~~(~~ XIXXXH    is matrix which plays the same role as the hat matrix in least 
square regression. Noting )~(tr H = p, the above defined iC~  can be expressed as a function of 
the corresponding residuals and leverages, 
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where ie~  is the ith component of the residual vector RR

ˆ~~ˆ~~ βXyyye  , ih~  is ith diagonal 
component of H~  and ijh~  is the ijth element of H~ . To compute iC~ , it is required an estimator 
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)ŷŷ(

C
i

i,Ri
i
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the fitted value.  
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The main advantage of deletion formulas is that, as in LS, the estimator does not have to be 
recomputed every time a case is deleted. For a value of k and h, all of the elements of (11) and 
(413) are readily available from a single run of semiparametric regression. 
 
 
Simulation Study 
 
In this section, we consider the model generating the data set which is used in the study of 
Roozbeh et al. (2010). However, we generate the data that will be included influential 
observations. The following model is used to generate data: 
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and the last 50 observations which are considered as influential are generated from  
ε ~ ),(N 2I0   where 2=σ  and ix ~ ),(N ∑x5 μ  with )10,10,10,10,10(=μ  and ∑x .  
 
The weight function )t(W jni  is defined as 
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which is Priestley and Chao’s weight with the Gaussian kernel (Roozbeh et al., 2010).  
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ii )k~~(~~)k~~(s)ŷ(SE xIXXXXIXXx    is an estimator of standart error of 

the fitted value.  
 

iC  can be expressed as a function of the corresponding residuals and leverages as 
 
 

)h~1(
e~h~

)h~(s

1C
i

ii
n

1i

2/12
ij

i







                                                                           (13) 

 
The main advantage of deletion formulas is that, as in LS, the estimator does not have to be 
recomputed every time a case is deleted. For a value of k and h, all of the elements of (11) and 
(413) are readily available from a single run of semiparametric regression. 
 
 
Simulation Study 
 
In this section, we consider the model generating the data set which is used in the study of 
Roozbeh et al. (2010). However, we generate the data that will be included influential 
observations. The following model is used to generate data: 
 

n,...,1i,)t(fxxxxxy ii55i44i33i22i11ii   
 

where 4)5,-2,2,(1,β , 1.0  and )
05.0t

1.2(sin)t1(t)t(f
i

iii 


   for n/)5.0i(t i  ,  

i=1,…,n. The first 450 observations are generated from ε ~ ),(N 2I0   and ix ~ ),(N x5 0  
with 
 































x

49.04.03.02.01.0
4.064.04.03.02.0
3.04.014.03.0
2.03.04.025.24.0
1.02.03.04.081.0

 

 
and the last 50 observations which are considered as influential are generated from  
ε ~ ),(N 2I0   where 2=σ  and ix ~ ),(N ∑x5 μ  with )10,10,10,10,10(=μ  and ∑x .  
 
The weight function )t(W jni  is defined as 
 







 











 
 2

n

ji

nn

ji

n
jni h2

)tt(
exp

2
1

nh
1

h
tt

K
nh

1)t(W   

 
which is Priestley and Chao’s weight with the Gaussian kernel (Roozbeh et al., 2010).  
 We use the cross-validation (CV) method to select the optimal bandwith hn and biasing 
parameter k simultaneously, which minimizes the following CV function: 
 

 



n

1i

2
iin )y~y~(

n
1)h(CV = ∑

n

1i

2
iii )h~-1/e~(

n
1



, 

 
Different combinations of k (0.2, 0.4, 0.6, 0.8, 1) and hn= (0.01, 0.06, 0.11, 0.16, 0.21, 0.26, 
…, 0.96) are used to find k and hn which minimize the CV simultaneously. The minimum of 
CV occured at k=0.2 and hn =0.06.   
 
The ratio of largest eigenvalue to the smallest eigenvalue of matrix  XX ~~ T  is 

75.775=12.38/84.29571=λ/λ 15  which implies that  XX ~~ T  matrix is ill-contitioned or the 
existence of multicollinearity in the data set. Hence, in this situation it is supported that ridge 
estimator is used instead of least square estimates.  
 
In order to examine the efficiency of Cook’s distance iC~  defined in (10) and  iC  defined in 
(12) in detecting single observation that has large impact on ridge estimator of β in 
semiparametric regression, as stated above, some observations are generated  to be influential 
obsevations one by one to see whether the defined measures detect it out. For each 
observation, these measures are calculated and the index plots of these measures are obtained 
as in Figure 1 and Figure 2.  
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            Figure 1. Index plot of iC~                                       Figure 2. Index plot of iC  
 
 
As seen from Figure 1 and Figure 2, iC~  can recognize majority of generated the last 50 
influential observations while iC  can not as successful as  iC~  to recognize generated 
influential observations. In addition, iC could find some other observations as influential 
observations. Since  the formula of iC  in (13) is multiplicative functions of the residual and 
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As seen from Figure 1 and Figure 2, iC~  can recognize majority of generated the last 50 
influential observations while iC  can not as successful as  iC~  to recognize generated 
influential observations. In addition, iC could find some other observations as influential 
observations. Since  the formula of iC  in (13) is multiplicative functions of the residual and 
leverage values but coexistence of the large residuals and the large leverages as in our 
simulated data result in the small iC .  
 
Conclusion 

 
In this study, Cook’s distances that are function of leverages and residuals is studied for ridge 
estimator in semiparametric regression.  Although no conventional cut-off points are 
introduced or developed for the these measures, it seems that index plot is an optimistic and 
conventional procedure to disclose infuential cases. It is seen that the proposed Cook’s 
distances are successful to detect influential observations in the data. 
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