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A non-invasive method developed to investigate the capacity of digital image texture analysis for the detection and 
differentiation of hip ostaoarthritic lesions. 

Thirty one femoral heads, after hip arthroplasty, were examined on a 1.5T MRI system. Bone marrow lesions (edema and cysts) were graded on 
MRI. Utilizing these MRI series, volumes of interest were extracted and classified for every ostaoarthritic lesion. 

According to the developed pattern recognition system, the highest classification accuracy in discriminating bone marrow edema from bone 
cysts was 98,92%, employing five textural features (mean value, correlation, sum of squares, sum average and sum variance). Individual 
accuracies in classifying correctly bone marrow edema lesions were 98, 73% and bone cysts 99, 07%. 

Using the developed pattern recognition system, accurately grading the severity of hip osteoarthritis can be performed, discriminating reversible 
and irreversible lesions in order to monitor the progression of the disease and the therapy effectiveness.

ABSTRACT
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INTRODUCTION
Osteoarthritis (OA) is one of the most common musculoskeletal dis-
eases associated mainly with aging.

The clinical symptoms include pain, joint stiffness and rigidity, motion 
dysfunction and in chronic stages it causes joint deformity [1,2]. 

In the development process of OA, articular cartilage changes play a 
key role, such as the loss of hyaline articular cartilage and the degra-
dation of proteoglycans (PGs) [1,3].

Articular cartilage damage causes changes in the underlying bone 
and the joint margins[1].

It is suggested that early diagnosis of OA is important for clinical 
treatment and therefore the quantitative evaluation of the biochem-
ical compositional changes of cartilage which occur before morpho-
logic degradation is valuable for the early diagnosis of OA.

Osteoarthritis of the hip is a multifactorial process and hip pain as-
sociated with OA is the most common cause of pain in older adults. 
Prevalence studies have shown the rates for adult hip OA range from 
0.4% to 27%. The major predisposing factors are age, developmental 
disorders, race, gender, genetics, occupation, sports exposure and 
previous injury [2].

HIP OA alterations: bone marrow oedema-like signal le-
sions
Osteoarthritis associated with bone marrow oedema-like signal le-
sions is an expression of a number of non-characteristic histologic ab-
normalities that include bone marrow necrosis, bone marrow fibrosis, 
and trabeculae abnormalities. Subchondral bone marrow signal alter-
ations may be observed in conjunction with trauma, chronic cartilage 
damage and osteoarthritis, as an idiopathic entity or as a feature of 
other diseases, such as osteonecrosis, inflammation or tumor. In OA, 
the importance of subchondral bone marrow signal alterations for 
structural progression, as well as a cause of pain, has been discussed 
in the literature. Most of these lesions are associated with overlying 
cartilage damage. 

Subchondral cystic lesions appear as well-defined areas of fluid signal 
on Magnetic Resonance Imaging (MRI), which can be associated with 
osteoarthritis.  

In OA research, bone marrow lesion (BML) size is regularly assessed 
with quantitative and qualitative methods.

Modality
Magnetic resonance imaging (MRI) is a noninvasive multiplanar sen-
sitive and useful method that can detect the changes of cartilage de-
generation and other osteoarthritic changes. With its ability to visu-
alize cartilage, soft tissues and bone, MRI is the method of choice for 
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the assessment of acute and chronic joint disorders [3].

Several MRI techniques are available including T1, T2 and Fat saturat-
ed weighted images and also delayed gadolinium-enhanced MRI for 
the cartilage abnormalities. 

T2 and fat sat images are widely used and have been proven to be 
more sensitive to collagen changes in the cartilage. 

The use of a panel of biomarkers for quantification is certainly the 
next step in quantitative MRI. 

Aim
In the literature there are many radiological grading systems for OA 
lesions.   Traditional scoring systems developed for X-ray are not ap-
plicable to the new data of MRI studies. Accepted scoring methods 
designed for MRI are predominantly qualitative and are based on 
visual assessment of the data without further grading according to 
objective grading system. The qualitative analysis can provide useful 
information of the OA lesion and inflammation, but there is lack of 
objectivity.

Emerging quantitative computer-aided methods present a new ap-
proach to monitoring disease activity and evaluating the effect of 
treatment.

Until now, in the literature, there are a few imaging analysis systems 
grading the severity of OA using X-rays. Boniatis et al. created a com-
puter-aided classification system, based on X-Rays, for the assessment 
of the severity of hip osteoarthritis [4], whereas Gregory et. al. de-
veloped an active shape model of the proximal femur to determine 
whether morphological changes of the bone could be quantified by 
using as a marker of hip OA [5].

Although it is very important to detect early OA lesions, especially re-
versible bone marrow lesions in order to prevent progression of the 
disease, according to our knowledge, there is no previous work for 
the evaluation and the differentiation of OA lesions with a pattern 
recognition system based on MRI.

The purpose of the present study was to detect lesions of the bone 
marrow with MRI and to develop a pattern recognition system to 
identify and differentiate BMLs lesions in order to provide the appro-
priate therapy.

MATERIALS  AND METHODS
Thirty one patients were submitted in total hip arthroplasty due to 
severe osteoarthritis. All femoral heads were examined on a 1.5T MRI 
system (GE HDX Signa) using a commercially available polarized knee 
coil after obtaining informed consent, according to the Helsinki Dec-
laration and after our institutional review board approved this study. 
MR images were acquired using the T1 water excitation three dimen-
sional (T1 3D FSPGR SPECIAL) sequence with repetition time: 20.6ms, 
echo time: 10ms, flip angle: 12, field of view: 160mm, slice thickness/
interslice gap: 1.6mm/0.7mm, matrix: 512x512, phase encoding: right 
to left. 

T1 Spin Echo weighted images (wi) were also obtained using repeti-
tion time: 860ms, echo time: 13ms, field of view: 100mm, slice thick-
ness/interslice gap: 2.0mm/0.2mm, matrix: 256x192, phase encoding: 
anterior to posterior. 

Additionally, T2 Fast Recover Spin Echo sequences were acquired us-
ing repetition time: 6440ms, echo time: 42ms, field of view: 100mm, 
slice thickness/interslice gap: 2.0mm/0.2mm, matrix: 384x256, phase 
encoding: anterior to posterior.

Subchondral bone marrow oedema-like signal alterations exhibit 
typical signal characteristics on MRI and are common but non-spe-
cific findings of OA.  MRI is the gold standard method to assess bone 
marrow, as early bone marrow damage cannot be visualized with any 
other techniques such as X-ray or ultrasound. On MRI, subchondral 
bone marrow signal alterations are visualized as ill-defined low signal 
intensity lesions on T1 weighted images compared to the unaffected 
bone marrow (Figure 1). 

On T2, proton density (PD) and fat suppressed (FS) weighted images 
these lesions are characterized as ill-defined areas of high signal in-
tensity in the subchondral cancellous bone, extending from the artic-
ular surface to a variable distance (Figure 2).

In order to classify oedema, we used the grading system of Kornaat 
et al. [3] and the lesions were graded as following: grade 0, absent; 
grade 1, minimal (diameter <5 mm); grade 2, moderate (diameter 5 
mm to 2 cm); grade 3, severe (diameter >2 cm) (Figure 2).

Subchondral cysts were defined as clearly delimited areas of high sig-
nal intensity on T2 wi with sclerotic margins, in the cancellous bone. 
According to their greatest dimension they were graded as: grade 
0, normal; grade 1, minimal (<3 mm); grade 2, moderate (3–5 mm); 
grade 3, severe (>5 mm) (Figure 3), according to the Kornaat et al. 
score [3]. 

Volume of Interest Extraction and Textural Features Cal-
culation
Utilizing these MRI series, an expert radiologist specified cubic Vol-
umes of Interest (VOIs) within each OA lesion using a software pro-
gram, developed for the purposes of the present study. The program 
was designed using the C++ programming language and the Visual-
ization Tool Kit (VTK) [6]. By utilizing the marching cubes algorithm 
[7], 3-dimensional models were built from DICOM MRI-series, provid-
ing the radiologist with a visual aid in order to segment the VOIs with 
lesions. From each segmented MRI-VOI, a set of parameters (features) 
that quantified the properties of volume-texture within the lesion 
was calculated.

Haralick et al. [8] and Galloway [9] described a set of textural fea-
tures, based on the gray-level co-occurrence and run-length matrices 
that quantified textural properties of 2D images. Their 3D (volumet-
ric) equivalents [10, 11] were employed in the present study for the 
purpose of quantifying textural volume properties of OA lesions. Ad-
ditionally, this set was enriched with features derived from the VOI’s 
histogram (mean value, standard deviation, skewness and kurtosis). 
Thus, a set of 36 volumetric textural features was extracted for each 
lesion; 4 from the VOI’s histogram, 22 from the co-occurrence and 10 
from the run-length matrices (Table 1).

All features were normalized to zero mean and unit standard devia-
tion [12], according to Equation 1

where x
i
 and x

i
’ are the i-th feature values before and after the nor-

malization respectively, and m and std are the mean value and stand-
ard deviation, respectively, of feature x

i
 over all patterns and all class-

es.

Least squares feature transformation - Probabilistic neural network 
classifier (LSFT-PNN)

Due to the small size of the dataset utilized in the present study, the 
probabilistic neural network (PNN) classifier was chosen. The PNN is 
a non-parametric feed-forward neural network classifier that encom-
passes both the Bayes’ classification approach and the Parzen’s esti-
mators of probability density functions [13]. The decision function of 
the PNN classifier is described by:

where x
i
 is the i

th
 training input pattern, x is the unknown pattern to 

be classified, N
k
 is the number of patterns forming the class x

k
, n is the 

number of textural features forming the input pattern while sigma σ 
is an adjusting parameter, taking values ranging between 0 and 1.

According to Equation 2, as the distance between x and x
i
 (||x-x

i
||) in-

creases, the exponential term approaches 0, indicating a small simi-
larity between the two pattern vectors. On the other hand, as the 
distance between x and x

i
 (||x-x

i
||) decreases, the exponential term ap-

proaches 1, indicating a significant similarity between the two pattern 
vectors. As σ approaches 0, even small differences between x

i
 and x 
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will provide a zero value for the exponential term, while larger values 
of sigma provide more smooth results. The selection of sigma affects 
the estimation error of the PNN and in the present study was deter-
mined experimentally by comparing the accuracies obtained for dif-
ferent values of the parameter. The unknown pattern x is classified to 
the class with the highest value of decision function d

k
(x) [13].

As presented in Figure 4, the basic PNN architecture consists of an in-
put layer, a pattern layer, a summation layer and an output layer. The 
input layer stores temporarily each pattern vector, which is fed to the 
network. The number of neurons (nodes) that structure the input lay-
er is equal to the dimensionality of the input pattern.  Each input pat-
tern is mapped to each one of the neurons of the pattern layer. Each 
neuron in the pattern layer represents a training pattern. In the pat-
tern layer, the Euclidean distance between the input and each train-
ing pattern is computed. The decision function (Equation 2) is then 
applied to provide the output of the pattern neuron. The summation 
layer has one neuron for each class, and implements the summation 
term of Equation 2 for the outputs of the patterns corresponding to 
the class. As it can be observed, each summation neuron is connected 
to the neurons of the corresponding pattern layer. The output layer 
contains one neuron and assigns the input vector to a class by im-
plementing a classification rule. In particular, the unknown pattern is 
classified to the class with the highest value of decision function d

k
(x) 

[13].

Training patterns x
i
, prior to entering the PNN classifier, were trans-

formed by means of a non-lineal least squares feature transformation 
(LSFT) technique, to render classes more separable by clustering the 
patterns of each class around arbitrary pre-selected points. The uti-
lized LSFT method is an extension of the linear least squares mapping 
technique, introduced by Ahmed and Rao [14].

Classification Scheme Design
An LSFT-PNN based classification scheme was designed to discrimi-
nate between bone marrow oedema and bone cysts (Figure 5).

The External-Cross-Validation (ECV) technique was used to avoid 
bias conditions [15], which may occur by using the same dataset in 
the feature selection and evaluation stages. Therefore, the dataset 
was randomly split in two subsets; one was used for optimal classifi-
er design (2/3 of the dataset) and the other for evaluation (1/3 of the 
dataset). The optimum feature combination in the design stage was 
determined by employing the exhaustive search method [12]. Ac-
cordingly, the LSFT-PNN classifier was designed by all possible feature 
combinations (up to 5 features), and at each combination the classifi-
er’s performance was evaluated by means of the leave-one-out (LOO) 
method [12], i.e. the LSFT-PNN classifier was designed by all but one 
pattern-vector, which was considered  unknown and it was classified 
as such. The process was repeated, each time leaving-out a different 
pattern-vector, until all pattern-vectors were classified to one of the 
two lesion classes. Thus, the optimal feature vector retained was the 
one that gave the highest classification accuracy with the least num-
ber of features (Figure 6).

RESULTS
All femoral heads exhibited extensive OA lesions on MRI.  30 cases 
were classified as grade 3 according to Kornaat classification and only 
1 was classified as grade 2.  

According to the subchondral cysts MRI revealed 5 femoral heads 
classified as grade 1, 6 cases classified as grade 2 and 20 cases graded 
3.

In accordance to the designed and implemented pattern recognition 
system, the highest classification accuracy in discriminating bone 
marrow oedema from bone cysts was 98.92%, employing five tex-
tural features (mean value, correlation, sum of squares, sum average 
and sum variance). Individual accuracies in classifying correctly bone 
marrow oedema lesions were 98.73% and bone cysts 99.07%. Com-
parative classification results for various numbers of features are pre-
sented in Table 2. 

Figure 6 depicts the boxplot of the best textural features for both 
bone marrow oedema (Figure 7a) and bone cysts (Figure 7b), nor-
malized according to Equation 1. The distribution of the normalized 

feature values was overlaid on the boxplots, employing a gradient bar 
where darker parts indicate higher value occurrences. Values marked 
with the plus sign are outliers and the horizontal lines within the box-
es indicate median values.

DISCUSSION
MRI is the gold standard method to recognize OA alterations in order 
to prevent the extension of the disease.

Bone marrow oedema is a reversible lesion and can be treated in early 
stages, thus it is extremely important to visualize and diagnose it. On 
the contrary, subchondral cystic lesions are signs of disease progres-
sion and cannot be reversed.

MRI, with high sensitivity to visualize bone marrow, cartilage and soft 
tissues, is the method of choice for the detection of OA lesions and for 
the assessment of acute and chronic joint disorders, as the subchon-
dral bone marrow cannot be visualized by X-ray or ultrasound. Thus, 
it is very important to choose the most sensitive sequences for the 
detection even of the smallest bone marrow alterations.   T1 3D FSP-
GR, T2 wi, Proton Density (PDwi), fat suppressed (FS) images are the 
sequences used in our study. 

Bone marrow oedema was assessed as an ill-defined area of increased 
signal intensity in the subchondral cancellous bone, extending 
from the articular surface to a variable distance. On the other hand, 
subchondral cysts were determined as well-defined areas of high sig-
nal intensity on T2-weighted images, in the cancellous bone underly-
ing the joint cartilage [3].

There have been several reports relating subchondral marrow edema 
patterns to osteoarthritis but few have correlated the association be-
tween marrow edema and subchondral cyst development.   Previous 
studies in the literature have showed that subchondral cysts arise 
within regions of subchondral marrow edema-like signal and typically 
also subjacent to cartilage abnormalities in patients with imaging evi-
dence of osteoarthritis or progression of osteoarthritis [1].

Bony microcontusions leading to necrosis, increased intra-articular 
pressure leading to extension of synovial fluid into the subchondral 
bone through tiny gaps in the articular surface (Bone Contusion Theo-
ry), or the proliferation of myxomatous tissue within the bone marrow 
(Synovial Breach Theory), are the main proposed theories in the liter-
ature for the pathogenic mechanism of subchondral cyst formation in 
osteoarthritis[1]. 

Carrino et al. supported that bone marrow edema-like signal can be 
an early “pre-cyst” lesion,   while not every area of bone marrow ede-
ma-like signal will give rise to a cyst [1]. In our study, we used the Ko-
rnaat et al. grading system, in order to quantify bone marrow edema 
and subchondral lesions [3].

All femoral heads studied on MRI showed severe OA changes. Fur-
thermore the developed pattern recognition system, gave us the 
opportunity to determine and characterize precisely even the small-
est lesions in the bone marrow which were not obvious by other ra-
diological methods. As mentioned above, bone marrow oedema is a 
reversible condition, while subchondral cysts are not. Therefore, using 
the pattern recognition system in combination with MRI, early detec-
tion and characterization of subchondral lesions can be achieved for 
grading and monitoring the stage of OA in order to choose the right 
therapeutic management to avoid the progression of OA.

The ECV method enabled the assessment of the system’s generaliza-
tion to new ‘unseen’ data. Under the ECV, the LSFT-PNN classification 
scheme achieved overall accuracy of 98.92% in discriminating bone 
marrow oedema from bone cysts. The textural features that optimized 
classification results described the signal intensity (mean value), the 
gray-tone linear dependencies (correlation), the dispersion of the 
gray-tone intensity values (sum average), and the variance of the 
normalized grey-tones in the spatial domain (sum variance, sum of 
squares).

Limitations of the study are the small number of femoral heads that 
were examined and the severe degree of osteoarthritic alterations. 
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We conclude that bone marrow edema like lesions detected on MRI 
can be differentiated and classified with great accuracy and specificity 
using the developed pattern recognition system.

Table 1. Textural features extracted.

Methods Features

Histogram (1st order 
statistics)

Mean Value, Standard Deviation, 
Skewness, Kurtosis

Mean and range of 0°, 
45°, 90° and 135° co-
occurrence matrices (2nd 
order statistics)

Angular Second Moment, Contrast, 
Correlation, Sum Of Squares, Inverse 
Difference Moment, Sum Average, 
Sum Variance, Sum Entropy, Entropy, 
Difference Variance, Difference Entropy

Mean and range of 0°, 45°, 
90° and 135° run-length 
matrices (2nd order 
statistics)

Short Run Emphasis, Long Run 
Emphasis, Gray Level Non Uniformity, 
Run Length Non Uniformity, Run 
Percentage

Table 2: Classification results utilizing the ECV method 
and the LSFT-PNN classifier.

Number of Features

Bone Marrow Edema
vs
Bone Cysts
Overall Accuracy (%)

1 73,12
2 77,96
3 88,71
4 98,39
5 98,92

Figure 1: coronal T1 SE wi exhibits subchondral cystic le-
sions with intermediate signal intensity surrounded by 
low signal bone marrow oedema.

Figure 2: T1 3D FSPGR SPECIAL (water excitation), shows 
ill-defined areas of increased signal, suggesting bone 
marrow oedema, grade III according to Kornaat system. 

Figure 3: T1 3D FSPGR SPECIAL (water excitation) de-
picts well-defined cysts of high signal intensity (grade 
III)

Figure 4: The basic PNN architecture. 

Figure 5: Classification scheme design.
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Figure 6: Optimal feature selection procedure.

Figure 7a: Boxplot of the best textural features for bone 
marrow oedema.

Figure 7b: Boxplot of the best textural features for bone 
cysts.
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