Articulating Knee Spacer for Infected Total Knee Replacement

Vipin Sharma
Department of Orthopedics, Dr Rajendra Prasad Govt Medical College, HP, INDIA

ABSTRACT

Background: Infected total knee arthroplasty is a challenge to patient and surgeon alike. Two stage exchange is the universally acclaimed method to tackle this problem. Various spacer devices are available for the first stage surgery for local delivery of antibiotics. These spacer devices have a set of spacer related complications which we have tried to circumvent by designing knee spacer. Specific design features make it suitable for local and deep delivery of antibiotics and almost negligible complications.

KEYWORDS: Infected total knee replacement, knee spacer

Introduction
The infection rate after primary total knee arthroplasty (TKA) ranges from 0.5 to 2% and is a serious problem in current times [1]. Antibiotic-loaded bone cement spacers in the two stage re-implantation technique are the gold standard. They allow early joint and patient mobilisation, a shorter hospital stay and potentially a reduced rate of re-infection. We describe a technique of creating an innovative knee spacer to be used in initial stage of a two stage reimplantation in patients with infected knee arthroplasty. Here we are discussing usefulness of our innovative knee spacer in providing excellent mobility and stability to the knee joint with negligible spacer related complications.

Procedure
This knee spacer device has two components, an articulating femoral/tibial cement spacer and the attached stem. Both spacers and stems are made on table with bone cement (PMMA).

By medial parapatellar approach the knee joint is exposed. Knee components are removed and thorough debridement and lavage done. On table knee spacer is prepared with high viscosity gentamicin loaded bone cement. Disposable syringes are chosen comparable to premeasured canal size. These are filled with high viscosity gentamicin bone cement which is allowed to cure. Syringes are slit to get solid cement stems. These stems are inserted in the femoral and tibial canals with one centimetre of their ends projecting into the joint. Cement in doughy form is layered on femoral and tibial side to make femoral and tibial spacer components. Cement prepared for femoral side is layered on the femoral surface and the projected stem to shape it like femoral condyles of desired thickness. A groove on the anterior surface of the spacer is made with the femoral component for better alignment of the patella. For tibial tray cement is placed on tibial surface in a doughy state and shaped into a spacer of desired thickness. A groove on the anterior surface of the spacer is made with the femoral component for better alignment of the patella. For tibial tray cement is placed on tibial surface in a doughy state and shaped into a spacer of desired thickness as determined preoperatively (Figure 1). Flexion extension matching is done to confirm an optimum spacer thickness and provide a smooth knee range of motion (Figure 2). Postoperatively antibiotics are started as per culture and sensitivity report of the fluid and tissue sent for culture peroperatively and continued for three months. Serial ESR and CRP monitoring is done for status of inflammation. Physiotherapy is started by walker ambulation from the 2nd day. Patients are discharged by 2 weeks and followed up regularly. Re-vision surgery is done about 3 months after complete subsidence of infection.

Discussion
Two-stage exchange arthroplasty with an antibiotic-impregnated cement spacer remains the standard treatment for patients with an infected TKA [3]. Spacers not only help in maintaining knee joint space but also act as a source of local antibiotic delivery. Nonarticulating spacers are useful in infected knees with substantial bone loss but present several disadvantages like knee immobility and subsequent stiffness, spacer dislodgement and bone erosion [4]. Scar formation, tissue adherence and quadriceps shortening make subsequent surgery a difficult one [5]. Temporary prosthesis is another technique that uses sterile prosthetic components fixed to underlying bone with antibiotic cement. But there is possibility of bacteri-
REFERENCES


