INTRODUCTION
Kilakarsal, a meat type medium sized sheep breed, known for its hardiness and survival in harsh environment of southern districts of Tamilnadu, is mainly reared on grazing in semi arid rangeland, fallow lands, harvested fields, road sides and in the foothills of Western Ghats during dry summer season. The low growth rate of native sheep is generally ascribed to their poor genetic potential, low plane of nutrition and inadequate health care. Sheep farmers do not feed concentrates due to their poor economic condition and lack of awareness on the benefits of supplementation. However, it is well established that concentrate feed supplementation to young animals during active growth phase ensures adequate nutrient supply and promotes growth performance (Tripathi et al., 2007). Many experiments have also indicated that a certain amount of concentrate supplementation in addition to free grazing would improve body weight gain in sheep (Santra et al., 2002). Moreover, there is a consistently decreasing trend in the availability of range land for grazing in many villages of Tamilnadu. Considering this scenario and future possibilities, it was realized that an improvement in body weight gain and mutton productivity of free ranging Kilakarsal sheep breed could be achieved if the requirements for growth are met through supplementation of nutrients. Hence this study was conducted to assess the effect of supplementation of concentrate feed upon dry matter intake, growth performance of native Kilakarsal lambs and its impact on cost of production, cost benefits under field conditions.

MATERIALS AND METHODS
Kilakarsal lambs maintained in field units of in situ conservation programme on Kilakarsal sheep in two villages of Manur block of Tirunelveli district of Tamilnadu were selected for this study. Twenty four lambs with equal number of male and female and aged four months were grouped into two of twelve lambs each - a) Control group with no concentrate supplementation and b) Experimental group with concentrate supplementation. The initial body weights were 8.85 ± 0.12 kg and 9.05 ± 0.17 kg for control and experimental groups respectively. All the lambs were allowed for eight hours grazing in the rangeland adjoining the villages. The experimental lambs were supplemented with 150 g concentrate mash feed daily in morning in emptying hours prior to grazing. The concentrate feed was composed of maize grain 50%, groundnut cake 20%, wheat bran 12%, gram husk 6%, and soyabean meal 2%. The cost per kg concentrate mixture was Rs.20.00. The experimental feeding trial was conducted for a period of 90 days. Animals were weighed before and after feeding/grazing for two consecutive days every week to calculate the feed intake. Mouth grab samples, grass samples from grazing land, concentrate feed samples were collected and estimated for dry matter by overnight drying in hot air oven at 105°C to calculate the daily dry matter intake. Fortnightly body weights were taken to calculate the body weight gain. The data collected on body weight, feed intake were subjected to statistical analysis (Snedecor and Cochran, 1989).

RESULTS AND DISCUSSION
The details of feed intake and growth of Kilakarsal lambs in control and experimental groups during the experimental period are given in Table 1.

Table 1. Feed intake and growth in Kilakarsal lambs on concentrate supplementation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Body weight (kg)</td>
<td>8.85 ± 0.12</td>
<td>9.05 ± 0.17</td>
</tr>
<tr>
<td>Final Body weight (kg)</td>
<td>12.38 ± 0.23</td>
<td>14.94 ± 0.19</td>
</tr>
<tr>
<td>Overall live weight gain (kg)</td>
<td>3.53 ± 0.14</td>
<td>5.89 ± 0.18</td>
</tr>
<tr>
<td>ADG (g)</td>
<td>39.22 ± 1.77</td>
<td>65.40 ± 1.62</td>
</tr>
</tbody>
</table>

Mean values with different superscripts vary significantly (P<0.01)

DMI – Dry matter intake, ADG – Average daily gain
Average daily dry matter intake (DMI) and ADG as % BW in experimental group (506.64 ± 3.15; 3.80 ± 0.24) were significantly higher than the control group (417.28 ± 2.58; 3.61 ± 0.13). Similar increase in ADG was observed by Chaturvedi et al. (2010) in Malpura and Kheri male lambs and Das (2010) in Sikkim local kids due to concentrate supplementation to grazing. DMI in both the control and experimental groups could meet the requirements of growing lambs (Ranjhan, 1998). Final live weight (14.94 ± 0.32 kg) overall live weight gain (5.89 ± 0.17 kg) and average daily gain (ADG) in experimental animals (65.40 ± 1.62 g) were significantly higher than the control (P<0.01) group. The additional concentrate intake ensured increase in readily available carbohydrates and nitrogen which improved the growth of animals (Lee et al., 2001). Similar higher finishing body weight, total body weight gain and ADG were reported by Santra et al. (2002) in Malpura and Awassi x Malpura lambs and Chaturvedi et al. (2009) in Avikalin lambs supplemented with concentrates to grazing. Higher ADG was also reported on supplementation with concentrate mixture daily in grazing local growing goats (Yadav and Khan, 2011) and in Sirohi kids under farm conditions (Chaudhary et al., 2015).

The economics of feeding concentrates to Kilakarsal lambs during the experimental period are given in Table 2.

Table 2. Economics of concentrate supplementation in Kilakarsal lambs during the experimental period (90 days)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamb rearing cost (includes grazing and other maintenance cost)</td>
<td>Rs.300.00</td>
<td>Rs.300.00</td>
</tr>
<tr>
<td>Additional cost of concentrate feed</td>
<td>--</td>
<td>Rs.270.00</td>
</tr>
</tbody>
</table>
The quantity of concentrates fed to the experimental group was 13.50 kg per lamb. Cost per kg live weight gain was higher in concentrate supplemented group (Rs.84.99) compared to control (Rs.96.77) as additional feed cost was involved on account of concentrate supplementation @ Rs.270/- per lamb (13.50 kg x Rs.20). However, as the experimental lambs gained an average of 2.36 kg (5.89 kg – 3.53 kg) live weight more than the control lambs during the same period of growth, a cost benefit of Rs.202/- per lamb could be achieved in concentrate fed lambs considering the present market rate of Rs.200/- per kg live weight (2.36 kg x Rs.200) – Rs.270). Thus feeding concentrates supplementary to grazing in young Kilakarsal sheep was found to be cost effective and economically beneficial in this study. Shinde et al. (1995) had reported similar high returns and favourable economics in semi intensively reared Avivastra lambs with concentrate supplementation. Chaturvedi et al. (2010) and Yadav and Khan (2011) had also observed that feeding concentrate mixture was economical under field conditions in growing sheep and goats respectively.

CONCLUSION
The results of this study indicated that supplementation of concentrate feed to grazing has provided additional nutrients to support rapid growth rate in Kilakarsal lambs. As it was beneficial both in terms of increased live weight gain and generating maximum profit, supplementation of concentrates to grazing sheep could be propagated as a technology for adoption for better returns under field conditions among Kilakarsal sheep farmers.

ACKNOWLEDGEMENT
The authors acknowledge with sincere gratitude the financial help and necessary facilities provided by Dr. M.S. Tantia, Principal Scientist & Head, Network Programme, ICAR – National Bureau of Animal Genetic Resources, Karnal under ICAR – NBAGR scheme on “In situ conservation of Kilakarsal sheep” for conducting this research work at TANUVAS Small Ruminant Research Centre, Tirunelveli.

REFERENCES