E-Coli As A Gauge of Bacteriological Quality of Water: an Overview

Dr. Ahmad Shtawa
Department of Biology, Faculty of Education, Al-jabal Al-gharbi University, Gharian, Libya

ABSTRACT
Monitoring the microbiological quality of drinking water relies largely on examination of indicator bacteria such as coliforms, Escherichia coli, and Pseudomonas aeruginosa. E. coli is a member of the faecal coliform group and is a more specific indicator of faecal pollution than other faecal coliforms. Two key factors have led to the trend toward the use of E. coli as the preferred indicator for the detection of faecal contamination, not only in drinking water, but also in other matrices as well: first, the finding that some faecal coliforms were non faecal in origin, and second, the development of improved testing methods for E. coli. The faecal coliform definition has also been revised to coincide better with the genetic make-up of its members and now includes newly identified environmental species. As a result, faecal coliforms are increasingly being referred to as thermotolerant coliforms. This, combined with improved detection methods for E. coli, has started a trend toward the use of E. coli in place of thermotolerant coliforms as a more reliable indicator of faecal pollution in drinking water. At present, E. coli appears to provide the best bacterial indication of faecal contamination in drinking water. This is based on the prevalence of thermotolerant (faecal) coliforms in temperate environments as compared to the rare incidence of E. coli, the prevalence of E. coli in human and animal faeces as compared to other thermotolerant coliforms, and the availability of affordable, fast, sensitive, specific and easier to perform detection methods for E. coli.

KEYWORDS:

Introduction
Water is a natural resource and is essential to sustain life. Accessibility and availability of fresh clean water does not only play a crucial role in economic development and social welfare, but also it is an essential element in health, food production and poverty reduction.1 However, safe drinking water remains inaccessible for about 1.1 billion people in the world and the hourly toll from biological contamination of drinking water is 400 deaths of children below the age five.2 Water helps maintain the moisture of internal organs of the body, maintains normal volume and consistency of fluids such as blood and lymph;4 regulates body temperature; removes poisons or toxins from the body through urine, sweat and breathing;5 and is essential for regulating the normal structure and functions of the skin.6 The body loses about four liters of water every day.3 It is therefore necessary to replenish this volume by drinking at least the equivalent amount of quality water every day. In developing countries with deteriorating environments, the demand for clean drinking water supply is growing rapidly in recent times.7 In Ghana, the supply of piped water is inadequate in most communities. This inadequacy is both in quantity and quality of public water supply. Only 40% of the total urban population has direct access to piped water. On the whole, only about 10.3 million people (approx. 51% of the population) are reported to have improved water supplies.8 Those who do not have access to safe water, as well as those who have access but cannot afford, rely on other sources of water with questionable quality.9

The microbiological quality of drinking water is a concern to consumers, water suppliers, regulators and public health authority alike. The potential of drinking water to transport microbial pathogens to great numbers of people, causing subsequent illness is well documented in countries at all levels of economic development.10,11 It is stated that, most sporadic cases of waterborne intestinal illness will not be detected or if detected, may not be recognized as water related.12 Several researchers have attempted to estimate the total burden of waterborne diseases world-wide. Waterborne disease might account for one-third of the intestinal infections world-wide,13 while it is estimated that water, sanitation and hygiene were responsible for 40% of all deaths and 5.7% of the total disease burden occurring worldwide.14 Human, livestock and wild animals are all sources of faecal contamination; in general, human faecal waste gives rise to the highest risk of waterborne disease.15 A wide spectrum of pathogenic agents can be found in water and monitoring for their presence on a routine basis is impractical. Traditionally, microbial safety of drinking water has been confirmed by monitoring for absence of microorganisms of faeces origin.16 The importance of quality changes in distribution is based upon evidence concerning the frequency and extends of known quality changes and their impact upon human health, a significant proportion of recognized piped drinking water-related disease outbreaks are related to quality deterioration in distribution.17 Piped distribution systems for drinking water are as important to the quality and safety of drinking water as the treatment itself. Water entering the distribution system must be microbiologically safe and ideally should be biologically stable. The distribution system itself must provide a secure barrier to posttreatment contamination as the water is transported to the user.18 Potentially pathogenic bacteria from shower water and air of stem cell transport unit was isolated,19 while Enterio- coccus faecalis, Clostridium perfrans and Cryptosporidium parvum oocyst was recovered from water by using MS2 bacteriophage.20

Historic perspective of indicator organisms
Traditionally, indicator micro-organisms have been used to suggest the presence of pathogens.21 Today, however, we understand a myriad of possible reasons for indicator presence and pathogen absence or vice versa. In short, there is no direct correlation between numbers of any indicator and entire pathogens.22 To eliminate the ambiguity in the term microbial indicator, the following three groups (Table 1) are now recognized: i) general (process) microbial indicators, ii) faecal indicators such as E. coli, iii) index organisms and model organisms. A direct epidemiological approach could be used as an alternative or adjunct to the use of index micro-organisms. Yet epidemiologic methods are generally too insensitive, miss the majority of waterborne disease transmission and are clearly not preventative.23 Nonetheless, the ideal is to validate appropriate index organisms by way of epidemiologic studies. A good example is the emerging use of an enterococci guideline for recreational water quality.24 Often epidemiologic studies fail to show any relationship to microbial indicators, due to poor design and/or due to the widely fluctuating ratio of pathogen(s) to faecal indicators and the varying virulence of the pathogens.25,26

Development of indicators: the coliforms The use of bacteria as indicators of the sanitary quality of water probably dates back to 1880 when Von Fritsch described Klebsiella pneumonia and K. rhinoscleromatis as microorganisms characteristic of human faeces.27 In 1885, Percy and Grace Frankland started the first routine bacteriological examination of water in London, using Robert Koch's solid gelatin media to count bacteria.28 Also in 1885, Escherich described Bacillus coli and renamed it Escherichia coli.29 In 1891, the Franklands came up with the concept that organisms characteristic of sewage must be identified to provide evidence of potentially dangerous pollution.28 By 1893, the Wurtz method of enumerating E. coli by direct plating of water samples on litmus lactose agar was being used by sanitary bacteriologists, using the concept of acid from lactose as a diagnostic feature. This was followed by gas production, with the introduction of the Durham tube.30 The concept of coliform bacteria, those bacteria resembling E. coli, was in use in Britain in 1901.31 The
colony count for bacteria in water, however, was not formally intro-
duction. Although various Coliforms along with streptococci and C. perfringens was
ergonized by bacteriologists by the start of the twentieth cen-
tury.28 It was not until 1905, however, that MacConkey described
his now famous MacConkey's broth,33 which was diagnostic for lac-
tose-fermenting bacteria tolerant of bile salts. Nonetheless, coli-forms were
still considered to be a heterogeneous group of organisms, many of which were not of faecal origin. The origins of the critical ob-
ervation that E. coli was largely faecal in origin while other Coliforms
were not, could be claimed.34

Table 1. Definitions for indicator and index micro-organisms
of public health concern.

<table>
<thead>
<tr>
<th>Group</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process indicator</td>
<td>A group of organisms that demonstrates the efficacy of a process such as</td>
</tr>
<tr>
<td></td>
<td>total heterotrophic bacteria or total Coliforms for chlorine disinfection</td>
</tr>
<tr>
<td>Faecal indicator</td>
<td>A group of organisms that indicates the presence of faecal contamination</td>
</tr>
<tr>
<td></td>
<td>such as the bacterial groups thermostolerant Coliforms or E. coli. Hence,</td>
</tr>
<tr>
<td></td>
<td>they only infer that pathogens may be present.</td>
</tr>
<tr>
<td>Index and model organisms</td>
<td>A group/or species indicative of pathogen presence and behavior</td>
</tr>
<tr>
<td></td>
<td>respectively such as E. coli as an index for Salmonella and F-RNA</td>
</tr>
<tr>
<td></td>
<td>coliphages as models of human enteric viruses.</td>
</tr>
</tbody>
</table>

Use of Escherichia coli as indicator organism

Escherichia coli are the predominant member of the facultative ana-
boreal portion of the human colonic normal flora.35 The bacterium’s
only natural habitat is the large intestine of warm-blooded animals
and since E. coli, with some exceptions, generally does not survive
well outside of the intestinal tract, its presence in environmental
samples, food, or water usually indicates recent faecal contamina-
tion or poor sanitation practices in food-processing facilities.36 The
population of E. coli in these samples is influenced by the extent of
faecal pollution, lack of hygienic practices, and storage conditions.35
The mere presence of E. coli in food or water does not indicate di-
rectly that pathogenic microorganisms are in the sample, but it does
indicate that there is a heightened risk of the presence of other fae-
cal-borne bacteria and viruses, many of which, such as Salmonel-
la spp. or hepatitis A virus, are pathogenic. For this reason, E. coli is
widely used as an indicator organism to identify food and water
samples that may contain unacceptable levels of fecal contamination.
E. coli is considered a more specific indicator of fecal contamination
than fecal coliforms since the more general test for fecal coliforms
also detects thermostolerant non-fecal coliform bacteria. The E. coli
test recommended by the United States Environmental Protection
Agency (EPA) confirms presumptive fecal coliforms by testing for the
lack of an enzyme which is selective for the E. coli organism. This test
separates E. coli from non-fecal thermostolerant coliforms.

Scientific classification of Escherichia Coli Kingdom:

bacteria; phylum; proteobacteria; class: Gamma proteobacteria; order;
Entero -bacteriales; family: Enterobacteriaceae; genus: Escherichia;
species: Escherichia coli. Escherichia coli (commonly abbreviated E. coli;
pronounced and named after its discoverer), is a Gram negative
rod-shaped bacterium that is commonly found in the lower intestine
of warm-blooded animals (endotherms). Most E. coli strains are
harmless, but some, such as serotype O157:H7, can cause serious food
poisoning in humans, and are occasionally responsible for product
recalls. The harmless strains are part of the normal flora of the gut,
and can benefit their hosts by producing vitamin K2,43 or by prevent-
ing the establishment of pathogenic bacteria within the intestine. In
fact, various classification schemes for coliforms have been emerged.
The earliest were those of MacConkey, who recognized 128 different
coliiform types, while Bergey and Deheen identified 256. By the ear-
ly 1920s, differentiation of coliforms had come to a series of correla-
tions that suggested indole production, gelatin liquefaction, sucrose
fermentation and Voges-Proskauer reaction were among the more
important tests for determining faecal contamination. These develop-
ments culminated in the IMVIC (Indole, Methyl red, Voges-Proskauer
and Citrate) tests for the differentiation of so-called faecal coliforms,
soil coliforms and intermediates. Water sanitary engineers, however,
require simple and rapid methods for the detection of faecal indica-
tor bacteria. Hence, the simpler to identify coliform group, despite
being less faecal-specific and broader (for which Escherichia, Klebsiel-
la, Enterobacter and Citrobacter were considered the most common
genera) was targeted. One of the first generally accepted method
for coliforms was called the Multiple-Tube Fermentation Test. New
strains of E. coli evolve through the natural biological process of mu-
tation, and some strains develop traits that can be harmful to a host
animal. These virulent strains typically cause a bout of diarrhea that
is unpleasant in healthy adults and is often lethal to children in the
devolving world. More virulent

Table 2. Virotypes of E. coli.56

<table>
<thead>
<tr>
<th>Name</th>
<th>Host</th>
<th>Description</th>
</tr>
</thead>
</table>
| Enterotoxi-
|genic coli |
| (ETEC) | | |
| Caustive agent of diarrhea | |
| (without fever) in humans, pigs, sheep, goats, cattle | |
| - The larger of the two proteins, LT enterotoxin, is similar to cholera toxin in structure and function, dogs, and horses |
| Enteropath-
|ogenic E. coli | | |
| Caustive agent of diarrhea in humans, rabbits, dogs, cats and horses |

Virulence properties of E. Coli

Enteric E. coli (EC) are classified on the basis of serological characteris-
tics and virulence properties (Table 2).

Like ETEC, EPEC also causes diarrhea, but the molecular
mechanisms of colonization and pathogenesis are different. EPEC
lacks fimbriae, ST and LT toxins, but they utilize an adhesin known
as intimin to bind host intestinal cells. This virote has an array of
virulence factors that are similar to those found in Shigella, and may
possess a shiga toxin. Adherence to the intestinal mucosa causes a rearrangement
of actin in the host cell, causing significant deformation. EPEC cells are
moderately-invasive (i.e. they enter host cells) and elicit an in-
flammatory response. Changes in intestinal cell ultrastructure due to
attachment and effacement are likely the prime cause of diarrhea in those afflicted with EPEC.
Isolation and identification of E. coli

Methods used to isolate E. coli as an indicator organism from food have not proved to be efficient for isolating pathogenic strains of E. coli. This is largely because pathogenic strains often differ considerably from nonpathogenic E. coli in growth patterns. Pathogenic strains frequently show delayed growth at 44 and 45°C, particularly when initially present in low populations. Some pathogenic strains will not produce acid and gas from lactose in LST, BGLB, or EC broths within 48 h. It has also been shown that growth in media containing sodium lauryl sulfate and growth at 44.5°C can cause a loss of plasmids, known to encode many virulence factors associated with pathogenic E. coli strains. One study indicated that up to 95% of E. coli cells lost plasmids during selective enrichment cultures. Therefore, the methods commonly used for detection of E. coli as an indicator organism should not be used to attempt isolation of pathogenic strains from food or water. Isolation of enterohemorrhagic E. coli O157:H7 must be approached differently than using the methods for other strains. E. coli O157:H7 has some biochemical differences from most of other E. coli strains that can be exploited in isolation and identification methods. E. coli O157:H7 ferments sorbitol slowly, or not at all and does not produce functional β-glucuronidase, whereas most of the other E. coli strains are positive in both tests. Further, E. coli O157:H7 strains do not ferment rhamnose on agar plates, whereas 60% of non-sorbitol fermenting E. coli belonging to other serogroups ferment rhamnose on agar plates. Several methods such as DNA probes and polymerase chain reaction (PCR), ELISA procedure utilizing monoclonal antibody (4E8C12) specific for an outer membrane protein of E. coli O157:H7 and media that can test both sorbitol fermentation and β-glucuronidase activity such as Sorbitol MacConkey agar containing MUG can be used for isolation of this organism. The identification and enumeration of E. coli of sanitary significance relies upon isolate conformance to the coliform and faecal coliform group definitions. E. coli isolates are traditionally identified by their IMViC pattern: + + - - (Type I) and + - - - (Type II). In this scheme I refers to the ability of the organism to produce indole from metabolism of tryptophane; M indicates the ability of the organism to ferment glucose to high acid as detected by E. coli

Methyl Red pH indicator dye in the medium; Vi stands for the production of neutral products 2.3 butanediol and/or acetoin from glucose metabolism, otherwise known as the Vogues-Proskauer reaction, whereas C represents the ability of the bacterium to use citrates as a sole carbon source. Recent data indicate that defining E. coli by IMViC and other methods alone may not give IMViC reactions corresponding to either Biotype I or Biotype II. The relatively high incidence of Type II E. coli in some specimens is at partly explained by the fact that many isolates require 48 h to produce a detectable amount of indole; hence, additional tests are essential for speciation.

Challenges of using E. coli as an indicator organism

As soon as the coliform test came into widespread acceptance, complications with its use and interpretation began to emerge. One concern was the discovery that a variety of microorganisms that read positive in the coliform test were not of fecal origin. As a result, the test method has evolved continually to become more specific. Some of the more significant developments were the so-called fecal coliform test which selects for coliforms of fecal origin by using a higher incubation temperature.

Though, disease-causing strains of E. coli species have been isolated from tap water, drinking water sources and mountain streams, examination of pathogenic E. coli is not easy due to the uncertainty in determining the pathogenic nature of isolated E. coli strains. There is no biochemical marker that can separate pathogenic from non-pathogenic strains and the relationship between serotype and pathogenicity is questionable. The use of E. coli as an indicator organism is somewhat restricted by the fact that E. coli is not a single species; certain genera of the coliform group such as Proteus and Aerobacter are normally found outside the human intestinal tract in soil; other organisms found in water that do not represent fecal pollution possess some of the characteristics attributed to E. coli and E. coli identical to that found in humans is also found in the intestinal tract of other warm-blooded animals. However, primarily, studies have shown that E. coli is a much better indicator of disease risk than is faecal coliform. EPA has therefore, recommended that E. coli be used as a criteria for classifying waters for fresh water contact recreation. Another weakness of the faecal coliform test and perhaps any indicator organism test geared to human waste is that there are some bacterial pathogens which are unrelated to human wastes. To the degree that naturally occurring microbial pathogens become a significant public health concern, completely new test procedures may have to be developed. Furthermore, while E. coli is specific for faecal contamination, there are three inherent problems of using E. coli as a confirmation of faecal contamination: i) it is outnumbered by other types of fecal bacteria making it more difficult to find; ii) it does not survive for long outside of the gut; iii) it can be found in pristine environments in the tropics. Therefore, the absence or presence of E. coli via a culture test does not absolutely confirm the absence or presence of faecal contamination. The E. coli tests used today as an indication of fecal contamination are commonly culture tests although there are PCR tests for the pathogenic strain E.coli O157:H7 and for enterotoxigenic strains. In addition to the inherent differences in the ecology of the above mentioned indicator organism, there is also the problem using culturable tests. All culture tests have an inherent bias in that they always underestimate the number of E. coli present in the sample. This occurrence happens for a number of reasons, but in the instance of recovering faecal indicators, the bias is primarily for two reasons: i) some healthy coliforms are viable but will not grow in the media prescribed for them; and ii) coliforms found in the environment are often stressed thereby making recovery very difficult despite the growth media used.

Current trends of E. coli

As indicator organism While the faecal coliform test has its limitations and problems, it also has many attributes. Perhaps, the most significant attribute is that: as a regulatory tool, it has worked long and well. In the case of water quality regulation, coliform testing has been used successfully for well over fifty years. For the foreseeable future, the faecal coliform test will continue to be the basis for much of the regulatory decision making regarding both quality water harvesting and contact recreation. The primary bias of using culturable tests in isolating E. coli as an indicator organism, has been overcome by using PCR, which detects both live and dead bacteria. The PCR is a rapid and reliable tool for the molecular-based diagnosis of a variety of infectious diseases. PCR analysis for screening drinking water and environmental samples has been reported, and has been utilized to identify E. coli in primary water specimens, stool specimens and outbreaks.

Conclusions

In conclusion its clear that E. coli appears to be the best indicator of bacteriological quality of water, primarily because of the, availability of affordable, fast, sensitive, specific and easier to perform detection methods for E. coli. However the fact remains that the life span of E. coli in water is short, thus it best determines, recent contaminations. It is therefore important that there is continuous monitoring for E. coli to determine the bacteriological quality of water.

References