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An advent of modern computer science has made it possible for the applied mathematician to study the inferential 
aspects of an increasing number of nonlinear regression models in recent years.

The inferential aspects for nonlinear regression models and the error assumptions are usually analogous to those made for linear regression 
models. The tests for the hypotheses on parameters of nonlinear regression models are usually based on nonlinear least squares estimates and 
the normal assumptions of error variables.

A more common problem with data that are best fit by a nonlinear regression model than with data that can be adequately fit by the linear 
regression model is the problem of heteroscedasticity of errors. The problem of heteroscedasticity can be studied with reference to nonlinear 
regression models in a variety of ways.

In the present study, an attempt has been made by developing inferential method for heteroscedastic nonlinear regression model.
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I. INTRODUCTION 
In estimating the linear regression models, the least squares method of estimation is 

often applied to estimate the unknown parameters of the linear regression model and errors 
are usually assumed to be independent and identically distributed normal random variables 
with zero mean and unknown constant variance. The violations of these crucial assumptions 
on error variables can have several consequences on estimates of parameters and test 
statistics. 

 The inferential aspects of nonlinear regression models and the error 
assumptions are usually analogous to those made for linear regression models. The tests for 
the hypotheses on parameters of nonlinear regression models are usually based on nonlinear 
least squares estimates and the normal assumptions of error variables. 

Among all assumptions, an important assumption of the regression model is that the 
errors need to have the constant or homoscedastic variance. Errors that do not have constant 
variances are known as heteroscedastic errors. The presence of heteroscedastic errors in the 
nonlinear regression model disturbs the optimal properties of the NLLS estimators of the 
parameters. These errors produce inefficient estimates of the parameters and invalid 
inferences concerning the true values of the parameters of the nonlinear regression model. 

The various inferential problems on nonlinear regression models involving 
heteroscedastic errors have been studied by Gallant and Goebel (1976), Carroll and Ruppert 
(1982a, 1982b), Cook and Weisberg (1983), Baljet (1986), Beal and Sheiner (1988), Welsh, 
Carroll and Ruppert (1994), Smyth (2002), Fox and Wiesberg (2010), Potocky and Stehlik 
(2010) and others. 

 
II. NONLINEAR STUDENTIZED RESIDUALS 

Residuals have vital role in many testing procedures designed to examine various 
types of disagreement between data and an assumed nonlinear regression model. In testing 
nonlinear hypotheses and procedures for detecting the problem of heteroscedasticity, several 
transformations of the Nonlinear least squares (NLLS) residuals have been suggested to 
overcome partially some of their shortcomings. 
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Consider the standard nonlinear regression model with usual assumptions in vector 
notation as  

  n 1 n 1 n 1Y f              ...(2.1) 

and  is  p 1 vector of unknown parameters. Suppose that ̂ is the nonlinear least squares 

estimator of  . 
For large samples, the NLLS residuals vector is given by  

  ˆˆe Y Y Y f                 …(2.2) 

where    1ˆ F F F            …(2.3) 

and     i
j n p

F F f X , 




 
     

      …(2.4) 

Here,  i
j

f X ,




 is the (i,j)th element of  n p  matrix  F  . 

An approximate relationship between e and   is given by 

 e M ,  where   1M I F F F F      

or   e I   , where     1
ij F F F F      is symmetric idempotent matrix 

known as ‘HAT’ matrix. 
or in scalar form,  

 
n

i i ij j
j 1

e   


 
 

 
 , i=1,2,….,n      

 …(2.5) 
Since,   is symmetric idempotent matrix, it follows that  
 trace( ) = rank ( ) = p 

and 
n

2
ij ii

j 1
 



 , i=1,2,…,n 

If  follows  2N O, I  then e follows a singular normal distribution with zero mean 

vector and variance 2I . Here   controls the variation in e. 
Since, the variance of each ie is a function of both 2  and ii , i=1,2,…,n; the NLLS 

residuals have a probability distribution that is scale dependent. The nonlinear studentized 
residuals do not depend on either of these quantities and they have probability distribution 
that is free of the nuisance scale parameters.  

One can make a further distinction between internal studentization and external 
studentization. 

(A) INTERNALLY NONLINEAR STUDENTIZED RESIDUALS 
In NLLS regression, the internally nonlinear studentized residuals are defined by, 

 
* i
i

ii

ee , i 1,2,..., n
ˆ 1 

 


      …(2.6) 
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where 

n
2
i^

2 i 1
e

e e
n p n p

 
 

 


          …(2.7) 

Here, 
2

* asy
ie

n p
~

 
 

  
Beta distribution with parameters 1

2
 and  n p 1

2
 

. 

It follows that  iE e 0 and  iVar e 1, i 1,2,...,n    

Also,  
  

ij* *
i j 1

2
ii jj

Cov e ,e , , i j 1,2..., n
1 1



 


   
   

 

(B)  EXTERNALLY NONLINEAR STUNDENTIZED RESIDUALS 
The externally nonlinear studentized residuals are defined by, 

   
** i
i 1

2
iii

ee , i 1,2,..., n
ˆ 1 

  


       …(2.8) 

where  

   
^ 2

2 i
^

ii2
i

en p 1
n p 1

 


 
    

 
 

or  

2
*^ ^

2 2 i
i

n p e
n p 1

 
   

   
 

Under normality  

^
2
i  and ie  are independent. 

Here, **
ie ~ Student’s t- distribution with  n p 1  degrees of freedom. 

A relationship between internally and externally nonlinear studentized residuals is 
given by 

2

1
2

** *
i i

*
i

n p 1e e , i 1,2,..., n
n p e

    
   

      …(2.9) 

Thus, **
ie  is a monotonic transformation of 

2
**
ie . 

 
III. ESTIMATION OF PARAMETERS OF NONLINEAR REGRESSION MODEL 

WITH 
HETEROSCEDASTIC ERRORS BY USING NONLINEAR STUDENTIZED 

RESIDUALS 
Consider the standard nonlinear regression model  

 i i iY f X , , i 1,2,...,n          …(3.1) 

which may be written in matrix notation as  
 n 1 n 1 n 1Y f                …(3.2) 

where  i i1 i2 ikX X ,X ,....,X is a k- component vector denotes the ith observation on 

known k-explanatory variables; 
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   is a p 1 vector of unknown parameters; 

  f is a known twice continuously differentiable function of  ; 

The usual assumptions of the nonlinear regression model are: 
i.    i i iE Y X f X , , i 1,2,....,n;   

ii.   is estimable or identified; 

iii.  i iE f X , 0      

iv.  2 2
i jE f X , , j 1,2,..,n       a finite constant and   

                i j i jE f X , ,f X , , i, j 1,2,..,n 0 j i          

That is, the i 's are conditional homoscedastic and nonautocorrelated random error 

variables (or)   2
nE I    

v. i 's  are normally distributed. i.e., 

 
i.i.d

2
i N O, , i 1,2,...,n~    

By minimizing the residual sum of squares  

     ˆ ˆ ˆR Y f Y f  
          with respect to ̂ , for large samples, under iterative 

process, an iterative nonlinear least squares (NLLS) estimator for   is given by 

       1

n 1 n n n n n
ˆ ˆ ˆ ˆ ˆ ˆF F F Y f      




               …(3.3) 

where  
n

n
ˆ

fˆF





 
   

as the regressor matrix. 

Here, all the terms on the R.H.S of (3.3) are evaluated at n̂  and  n
ˆY f     is the 

vector of nonlinear least squares residuals for an arbitrary value of  . 
 By violating the assumption of homoscedastic errors in the nonlinear model (3.1) one 
may assume that 

   2E             …(3.4) 

where   or   is symmetric positive definite matrix 
If the diagonal elements of dispersion matrix  are not all identical and  is free from 

autocorrelation then   can be considered a diagonal matrix. 
  2 2 2

1 2 ndiag , ,....,          …(3.5) 

and with ith diagonal element is given by 2
i . 

 Define the proposed iterative NLLS residual vector based on n̂  as  n n
ˆe Y f     . 

Also, Iterative Nonlinear Internally Studentized Residuals are defined by 

 
 

* ni
ni

nii

ee , i 1,2,..., n
ˆ 1 

 


      …(3.6) 
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where           1

n nij n n n n
ˆ ˆ ˆ ˆF F F F     


          

 …(3.7) 
is symmetric idempotent matrix known as ‘HAT’ matrix. 

 

n
2
ni^

2 n n i 1
e

e e
n p n p

  
    


       …(3.8) 

Here, 
2* asy

nie Beta
n p

~ 
 

  
distribution with parameters ½ and  n p 1 2  , 

It follows that,  niE e 0  and  niVar e 1, i 1,2,...,n    

Also,  
  

nij* *
ni nj 1

2
nii njj

cov e ,e , i j 1,2,...., n
1 1



 


   
   

   …(3.9) 

Consider an estimator for   
2 2 2* * * *

n n1 n2 nn
ˆ diag e ,e ,.....e            …(3.10) 

Now, an Iterative Estimated Nonlinear Generalized Least Squares (IENLGLS) 
estimator for   is given by  

        
1

^
1

* * * * * * *
n 1 n n n n n nF F F Y f      

 



 
          

  …(3.11) 

Here   
~
*
n

*
n

fF





 
   

 as the regressor matrix and  *
nY f     is the vector of 

IENLGLS residuals for an arbitrary value of  . 

 Further      
1

^
1

* * * *
n n n nVar F F  

 
 
  

  
     …(3.12) 

 
IV. A TEST FOR HETEROSCEDASTICITY IN NONLINEAR REGRESSION 

MODEL BY USING ITERATIVE NLLS INTERNALLY STUDENTIZED RESIDUALS 
One of the crucial assumptions of the nonlinear regression model is that the error 

observations have equal variances. But, in practice, it has been observed that errors are 
heteroscedastic. If errors are heteroscedastic, the Nonlinear Least Squares (NLLS) estimates 
of the parameters are inefficient and usual method of inference may produce misleading 
conclusions. Thus, there is need for testing the existence of the problem of heteroscedasticity 
in the nonlinear regression model. A wide number of tests have been developed, with a 
quickening of interest in the last two decades. 

With usual notation, consider the nonlinear regression model 
  i i iY f X , , i 1,2,...,n     

where  i i1 i2 ikX X ,X ,...,X , i 1,2,..,n  is a k-componnent vector denoting the ith 

observation on known independent variables; 
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   is  p 1 vector of unknown parameters. i ,i 1,2,...,n   are i.i.d. error 

random variables with mean zero and unknown unequal variances i.e., the errors are 
heteroscedsatic errors. 

In testing the null hypothesis of homoscedsticity of errors, the following procedure 
may be applied: 

Step (1): The observations on dependent variable Y are arranged according to 
the ascending order of observations on independent variable X, with which the 
hereroscedasticity might be associated. 

Step (2): Divide the arranged data into k groups of sizes 1 2 kn ,n ,....,n  
respectively. Here, 1 2 kn ,n ,....,n  should be approximately equal. One may choose k such that 
the size of each group is reasonably small and it is greater than the number of parameters in 
the nonlinear regression model. For instance, for a sample of 30 observations, k may be 
chosen as 3 such that 1 2n ,n  and 3n  may be equal to 10. 

Step (3): Run separate nonlinear regression models on these k groups of 
observations and obtain the Iterative Nonlinear Least Squares Internally Studentized Residual 
Sum of Squares (INLLSISRSS) for each nonlinear regression model and pooled them as 
(RSS)I with degrees of freedom      1 2 kn p n p ...... n p      . 

Step (4): Obtain the INLLSISRSS for the combined data as (RSS) by estimating 

a single nonlinear regression model with degrees of freedom 
k

j
j 1

n p


 
 

 
 . 

Step (5): Compute the F-test statistic for testing the null hypothesis of 

homoscedastic errors as  
k

j
j 1

I

k
p, n kp

I j
j 1

RSS RSS p
F ~ F

RSS n kp 

  
  

    





   
 


 and compare the calculated 

value of F-test statistic with its critical value and draw the inference accordingly. 
 

V. CONCLUSIONS 
Most of the mathematical statisticians have studied various inferential aspects of 

regression models under heteroscedasticity by using Ordinary Least Squares (OLS) residuals, 
Best Linear Unbiased Scalar (BLUS) residuals and Recursive residuals. Since, shortcomings 
of OLS residuals arise due to heteroscedastic errors, researchers have suggested several 
transformations of the OLS residuals to overcome partially some of their shortcomings. 

Nonlinear studentized residuals have been defined to study inferential aspects of 
nonlinear regression models with heteroscedastic errors. 

A general structure for heteroscedastic errors has been specified and estimation 
method has been developed to estimate the parameters of the nonlinear regression model 
under heteroscedastic error structure. 

A new test for the problem of heteroscedasticity in nonlinear regression model has 
been derived by using iterative NLLS internally studentized residuals. 

 
work. 
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