
IF : 3.62 | IC Value 70.36

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 9

 Volume-5, Issue-5, May - 2016 • ISSN No 2277 - 8160

Research Paper Commerce Statistics

Query Processing System and Xml Query Operation

Kanchan Kumari Department of Statistic and Computer Applications, T. M. B. U.
Bhagalpur.

Brajnandan Kumar Department of Statistic and Computer Applications, T. M. B. U.
Bhagalpur.

B.K. Das Department of Statistic and Computer Applications, T. M. B. U.
Bhagalpur.

XMLis also known for the excessive information redundancy in its representation. There are several steps involved in
this method; however, we have focused particularly on XML data partitioning and dynamic relocation of partitioned
XML data in our research work. Since the efficiency of query processing depends on both XML data size and its structure,

these factors should be considered when XML data is partitioned. A general way to publish relational data as XML is to provide XML views over
relational data, and allow business partners to query these views using an XML query language. In the present paper, we have described the
operation in query processing over XML and different operational steps. In this paper, we also have presented XML through the process to create
the query and all processes down by the XML operation steps and then obtained the output as result.

ABSTRACT

KEYWORDS :

1 INTRODUCTION:

XML languages, such as XQuery, XSLT and SQL/XML, employ XPath as the search and
extraction language. XPath expressions often de¯ne complicated navigation, resulting in ex-
pensive query processing, especially when ex-ecuted over large collections of documents. In
this paper, we propose a framework for ex-ploiting materialized XPath views to expe-dite
processing of XML queries. We explore a class of materialized XPath views, which may
contain XML fragments, typed data values, full paths, node references or any combination
thereof. We develop an XPath matching algo-rithm to determine when such views can be used
to answer a user query containing XPath expressions.An XML document can be seen as a
rooted, ordered, la-belled tree, where each node corresponds to an element or a value, and the
edges represent (direct) element-subelement or element-value relationships. The ordering of
sibling nodes (children of the same parent node) implicitly de nes a total order on the nodes in
a tree, obtained by traversing the tree nodes in preorder. An XML database can be viewed as
an XML document, once a dummy root node has been added to convert the forest into a tree.

A general and flexible way to publish relational data as XML is to create (possibly many) XML
views of the underlying relational data. Each of these XML views can provide an alternative,
application-specific view of the underlying relational data. Through these XML views,
business partners (and other XML application developers) can access existing relational data
as though it was in some industry-standard XML format. One simple solution is to materialize
the entire XML view on request and return the resulting XML document. The main problem
with this approach is that, in many cases, applications do not require the whole view to be
materialized. For example, in an XML view of available items, a business partner may only be
interested in a particular item. Materializing the availability of all the items would be wasteful
in this case because it wouldThe query processing cost as well as storage cost of XML data is
dependent on the data size, so that we should evenly distribute partitioned data among
computation nodes. If the partitioned data can be distributed in such a way, query processing
cost is distributed among the multiple computation nodes.
The database community utilizes inverted list filtering, since the problem is so similar to that
addressed in structured information retrieval applications. In addition to inverted list filtering,
XML query processing naturally includes navigational access to XML data. Such access is
similar to Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the VLDB copyright
notice and the title of the publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment. There are queries for which
structural navigation followed by inverted list filtering is best. This suggests that a native XML

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 10

Volume-5, Issue-5, May - 2016 • ISSN No 2277 - 8160 IF : 3.62 | IC Value 70.36

repository needs to support query plans that utilize these query processing approaches, and
needs to be able to pipe intermediate results between the two. Finally, given that no one style
of processing dominates, an XML query processor requires query optimization techniques and
statistics to decide how to choose among the alternatives for any given query results which
provides significant memory savings and al-lows to join larger relations at the cost of more
intensive CPU usage and some loss in response time. We present experimental results showing
that our optimizations give significant effect as compared with a straightforward
implementation. We also demonstrate that the algorithm is superior to some other algorithms
for set-containment joins.

2 FUNDAMENTAL XML & ELEMENTS, DTD:

An XML document is usually modeled as a rooted, ordered, labeled tree. Each node in the tree
corresponds to an ele-ment or a value, and the edges represent immediate element-sub element
or element-value structural relationships. When considering structural XML queries, one has
to quickly de-termine parent-child and ancestor-descendant relations for a given set of tree
nodes. This is achieved by using special la-beling schemes that capture such relationships
between node pairs without having to traverse the path to each node. An important feature of a
numbering scheme for multiversioned XML documents, is how the scheme adapts to changes.
We thus considered various such schemes that are describe we discuss previous approaches on
maintaining and querying multiversion XML documents.

Mikael Fernanduzet al.,(2000)XML serves dual functionalities as markup language and
data format. It separates presentation and data thus offering independency and flexibility
for content association. Due to this nature of flexibility, data interchanged between two
very different systems can use XML as the data format. XML tree-like structure is
intuitive, human readable, and easy to understand. With the help of XML schema or DTD,
the type and attributes of each tag usable for certain XML document can be well defined.
The eXtensible Markup Language (XML) is a hierarchial format for data representation and
exchange. An XML document consists of nested XML elements starting with root element.
Each element can have attributes and text values, in addition to nested sub-elements.

3 FULL TEXT SEARCH QUERY SEMANTICS:

Full-text search queries concerned in this paper are composed of keywords and four operations
conjunction, disjunction, proximity and order. Conjunction and disjunction operations combine
several (at least 2) sub-queries into a single query. Proximity and order operations are applied
to a single query to produce another query.

4 QUERY PROCESSING ARCHITECTURE:

Jayavel Shanmugasundara et al.,(2001) present our high-level query-processing architecture. We begin by
illustrating how XML views are created and queried in XPERANTO. As a starting point, XPERANTO
automatically creates a default XML view, which is a low-level XML view of the underlying relational database.
Users can then define their own views on top of the default view using XQuery. Moreover, views can be defined
on top of views to achieve higher levels of abstraction. The main advantage of this approach is that a standard
XML query language is used to create and query views. This is in contrast to approaches such as j.cheang et
al.,(2000) and m.femanez et al., (1999) where a proprietary language is used to define the initial XML view of the
underlying relational database. The default XML view for a simple purchase-order database. As shown, the
database consists of three tables, one table to keep track of customer orders, a second table to keep track of the

IF : 3.62 | IC Value 70.36

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 11

 Volume-5, Issue-5, May - 2016 • ISSN No 2277 - 8160

items associated with an order, and a third table to keep track of the payments due for each order. Items and
payments are related to orders by an order id (oid). In the default XML view, top-level elements correspond to
tables with table names appearing as tags.

4.1 P2P Systems

 Peer-to-peer (P2P) systems adopt a completely decentralized approach to resource management. By
distributing data storage, processing and bandwidth across all peers in the network, they can scale without
the need for powerful servers. P2P systems have been successfully used for sharing computation, e.g.
SETI@home [m.slopiro et al.,(2004)], communication [ICQ. http://www.icq.com/.] or data, e.g. Gnutella
[Gnutella. http://www.gnutelliums.com/.] and Kaaza [JXTA. http://www.jxta.org/.]. The success of P2P
systems is due to many potential benefits: scale-up to very large numbers of peers, dynamic self-
organization, load balancing, parallel processing, and fault-tolerance through massive replication.
Furthermore, they can be very useful in the context of mobile or pervasive computing. However, existing
systems are limited to simple

 Some important theme that’s through we are know how work p2p system and (my

contribution)

 Processing system Autonomy: processing system autonomous peer should be able to join or leave the
system atany time without restriction. It should also be able to control the data it stores and which other
peers can store its data, e.g. some other trusted peers. Xml Query processing expressiveness: the xml
query processing language should allow the user to describethe desired data at the appropriate level of
detail. The simplest form of query is key look-up which is only appropriate for finding files. Keyword
search with ranking of results is appropriate for searching documents. But for more structured data, an
SQL-like query language is necessary.

 Efficiency power: this through we are get the fundamental resorcesefficient use of the P2P system

resources (bandwidth,computing power, storage) should result in lower cost and thus higher throughput
of queries, i.e. a higher number of queries can be processed by the P2P system in a given time.

 Working purity: depend upon working purity and query processing and check the query by the system

and we are get the output and refers to the user-perceived efficiency of the system, e.g.completeness of
query results, data consistency, data availability, query response time, etc.

 Problem analysis: analysis areiniseal for query processing so, efficiency and quality of services should
be provided despitethe occurrence of peers’ failures. Given the dynamic nature of peers which may leave
or fail at any time, the only solution is to rely on data replication.

System Security:security vital roll playin the query processing time the open nature of a P2P system makes

security a major challengesince one cannot rely on trusted servers. Wrt. data management, the main security issue
is access control which includes enforcing intellectual property rights on data contents.

5 VARIOUS XML OPERATION:

5.1 Multi-data source definition language

The purpose of MDL is to define the multi-data source schema of a peer starting from a set of data sources
schemas. A multi-data source schema is a collection of data sources’ schemas or multi-data sources. The following
example shows the schema of a multi-data source owned by peer Sg denoted PSg. In this example the three peers
PBnp, PCio and PCl are called remote peers.

5.2 Multi-data source retrieval language

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 12

Volume-5, Issue-5, May - 2016 • ISSN No 2277 - 8160 IF : 3.62 | IC Value 70.36

We present briefly the Multi-data source Retrieval Language (MRL) and we give an example of a
query using this language. An MRL query form is defined as follows:

Use (multi-)datasource1 name1 [,(multi-)datasourcejnamej]*
Allow $ <semantic variables>

(E)XQuery query Close

name1 [,namej]*
The clauses Use, XQuery query and Close are mandatory in MRL Queries, whereas the clause Allow is
optional. The clause Use determines the scope of the query and connects to datasources for processing whilst
the clause Close disconnects from data sources. The name is a given alias for either a data source or multi-
data source and the clause Allow permits the declaration of semantic variables. Through these variables, the
user declares his/her intention to access data, in a given query, that are semantically similar and differently
named. The (E)XQuery query can be formulated like a query w.r.t. to XQuery language or as an EXQuery
query that allows an active data source to be called.

Example 2 (One semantic variable): Select inMSchsgthe name of the branches in thetwo
data sources Bnp and Cio.

Q: use bnpb,cio callow
$x=nom,name

for $a in document("MSchsg")/bank/bank1/bank2, $b in $a/*/$x
return <result>$b/text()</result>
closeb,c

6 QUERY PROCESSING SYSTEM & MY CONTRIBUTION:

Query processing system (over xml query operation)there are six type operation perform in query processing
system.

Step 1client side query input

Client side query create by the then it required all information it is form of query and here
input the instruction set of program and with set of rules.

Step 2query validation and operation and progress translation

Query validation that through we are checked the all instruction syntax through the system
and translate it.

Step 3query optimizer and execution time

Query execution time is very impotent time that is query optimizer and execution plan
successfully down.

Step 4query code generate operation

Codes aregeneratingin this operation and promote the next step easily.

IF : 3.62 | IC Value 70.36

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 13

 Volume-5, Issue-5, May - 2016 • ISSN No 2277 - 8160

Step 5code in processing

In this process code ready to go in processing.

Step 6 gives the output

7 ATUAL OUTPUT/RESULT OF QUERY:

Client side
query input

Query validation and
Operation and
program Translation

Query optim izer and
execution time

Query code
generate operation

Code in processing Gives the output

Step-1 Step-2 Step-3

Step-4 Step-5 Step-6

 XML query operation steps1.1

8 VIEW OF XML:

8.1 Multiple Views XML

Now we only considered using a single view and a single compensation root to construct compensation.
However, a query can usingmultiple views. Similarly the same view could potentially be used multiple
times, if the view extraction point mapped to multiple query nodes.We construct compensation plan
using the fol-lowing four-step algorithm, which takes as input a set of compensation roots produced by
matching one or more views into the query.

 Find an XPS node in the query tree, that is a low-est common ancestor (LCA) of all compensation

roots.
For each compensation root qi , construct an XPath expression Qi that starts at the compensa-tion root and
traverses upward to the LCA node. The Qi includes local predicates of qi if the cor-responding view contains
data extraction.

 Optimize each Qi, as if it was a compensation, using the algorithm of Section 4.2; construct an

intersection of all Qi expressions Construct the compensation expression with
T

Qi as the view and
LCA as the compensation root.

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 14

Volume-5, Issue-5, May - 2016 • ISSN No 2277 - 8160 IF : 3.62 | IC Value 70.36

Note that every view involved in the plan, has to store node references to facilitate upward traversal
from the compensation roots to the LCA node

EXAMPLE 4.3 Consider Q = ==order[@date > "Jan 1; 2004" and lineitem=@price > 100]=number, and
a view V = ==@¤ with data; path, and referenceextractions. The view maps into the query in two dif-
ferent ways. The two compensation roots are @date and @price. Thus the LCA node is ==order.

In the second step we construct expressions Q1 and Q2which start at the compensation roots and
nav-igate to ==order. Q1 = self :: attribute(date)[: > "Jan 1; 2004"]=parent :: order. Q2 = self ::
attribute(price)[: >100]=parent ::lineitem=parent :: order. Both Q1and Q2contain local predicates onthe
compensation roots, because V can answer these predicates directly using the data extraction.

The Q1 and Q2 are optimized into the expressions P1and P2, shown below, using the three types of
ex-tractions stored in the view.

P1= ¼reference=parent::¤(
¾

data>"Jan 1;2004"^path»==order=@date
(V))

P2= ¼reference=parent::¤=parent::¤(
¾

data>100^path»==order=lineitem=@price
(V))

Finally, the compensation expression is computed using ==order (LCA) as the compensation root

and Q1 \ Q2as the view. The resulting plan is:
¼self::¤=n

umber(P1 \ P2) 2

Note that the above algorithm provides only one of many ways to construct compensation from mul-
tiple materialized views. For some queries and some datasets it might make sense to apply a portion
of the compensation before the structural join on the LCA. We are currently investigating cost-based
optimization of compensation expressions.

9 VIEW COMPOSITION:

XML views with nested sub-elements are computed Jayavel Shanmugasundaram et al.,(2001)
from flat relational tables. Navigational operations expressed as path expressions in XQuery queries traverse these
nested structures to extract sub-elements and their attributes. Therefore, the query operators that traverse nested
structures effectively invert the query operators that create them in a view. Navigational operations can thus be
eliminated by undoing the construction of the corresponding elements. Our view composition module performs
this query simplification.

Removing all XML navigation operations offers several performance benefits. The obvious benefit is that
the construction of intermediate XML.

9.1. Composition Rules
These represent the functions that capture all the navigation operations in an XQuery query defines twelve
composition rules that can be used to eliminate all occurrences of these navigational functions. These rules are
complete in the sense that they specify how all occurrences of navigational functions can be eliminated. This
is done by specifying a composition rule for every possible input to a navigational function, which specifies
how the navigational function is to be removed for the given input. We now describe the composition rules in
detail.

IF : 3.62 | IC Value 70.36

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 15

 Volume-5, Issue-5, May - 2016 • ISSN No 2277 - 8160

The getTagName function when applied to the cr8Elem can be reduced to the first argument of the cr8Elem
function (which is the tag name of the created element). Rules 2-5 are defined in a similar manner. Rules 6 and
7 replace the isElement function by true or false, depending on whether the input is anelement or not. Rules 8
and 9 are defined similarly. Rule 10 composes the unnest function with the aggXMLFrags function by simply
returning the input to aggXMLFrags without performing any aggregation. Rule 11 composes the unnest
function with the cr8XMLFragList function by reducing the unnest function to a union of all the arguments of
the cr8XMLFragList function. Rule 12 is defined similarly

9.2 Applying Composition Rules

We eliminate all navigational operations by repeated application of the composition rules. This step is
complemented by a number of other query rewrite transformations that push down predicates, and remove
unreferenced columns and operators.

10 COMPUTATION PUSHDOWN:

The goal in this phase of query processing is to push all data and memory intensive operations down to the
relational engine as an efficient SQL query. We describe two query processing techniques that make this
possible.

10.1. Query Decorrelation

we showed how complex expressions in XQuery are represented using correlations. However, it has been
shown in earlier work that executing XML queries as correlated queries over a relational database leads to poor
performanceShanmugasundaram, et. al., (2000)We thus present query decorrelation P. Seshadri, H. Pirahesh
et al.,(1996) as a necessary step for efficient XML query execution.

11 QUERY PROCESSING TIME:

11.1 Query Time

We distinguish between ordered and unordered matches. The subsequence based methods need to run all possible orderings of
an unordered twig query so as to find all un-ordered matches.
11.1.1 Ordered Matches
The execution time (note the logarith-mic scale) of Q1−Q5 for the three version ranges, respec-tively. The single and interval
(5 or 20 consecutive) ver-sions were chosen randomly within the document’s evolu-tion. The Snapshot approach could be
implemented using either LCS or Twigstack. In these figures we report the Twigstack implementation (effectively, for each
version, the snapshot of each element list is stored and accessed by the original Twigstack algorithm).

For a single version query, the Snapshot approach performs well. However, as the ver-sion range increases the performance
quickly degrades; this is because results from each document version are first col-lected and then merged. While the Log-
Based method pro-vided the minimal amount of storage space, its query run-times are too expensive regardless of version
range. This is attributed to the overhead incurred when having to recreate the document for a given version.

TLCS is consistently worse than both the MVBT-Twigstack and MVBT-LCS approaches. This is because the MVBT-based
approaches focus the algorithms to the nodes valid for the version(s) in the query. Instead, the TLCS has to parse the overall
document sequence (including nodes that are not related to the query version(s)) before it creates the docu-ment sequence
needed for the query. The TLCS process-ing time is unaffected by the size of the version range since the processing is eff
ectively the same. In contrast, MVBT-Twigstack and MVBT-LCS processing increases as the ver-sion range increases since
the number of nodes accessed by either MVBT-Twigstack or MVBT-LCS also increases.

Among the MVBT based approaches, the performance of MVBT-LCS is faster than MVBT-Twigstack. This obser-vation is
similar to what has been reported for ordered twig queries in the non-versioned environment [14]. Among the various queries,
MVBT-LCS shows the smaller runtime for queries Q1 and Q5; this is to be expected since these queries have the lowest
selectivity.

The support of versions through the use of the MVBT has a relatively small overhead on the traditional query processing
algorithms. This can be seen in Figure 5, when comparing the Snapshot approach with MVBT-Twigstack for a single version

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 16

Volume-5, Issue-5, May - 2016 • ISSN No 2277 - 8160 IF : 3.62 | IC Value 70.36

query. The Snapshot approach used Twigstack on the stored version of the document, while MVBT-Twigstack has the
overhead of using the MVBT. We observed the same when comparing LCS-TRIM with MVBT-LCS for a single version [3].

 Figure 8: Unordered: Single Version

11.1.2 Unordered Matches

Figures 8-10 depict the execution times of Q1−Q5 when unordered matches are desired. For simplicity the graphs show only
the TLCS, MVBT-Twigstack and MVBT-LCS. The MVBT-Twigstack behavior is similar with the ordered case, since the
Twigstack approach can easily do both or-dered and unordered matchings. Instead, the LCS based approaches create an ordered
sequence for each twig query. As a result, all configurations of a query must be processed for finding the unordered matchings
(more twigneed to processed per query). As expected the runtime of the LCS approaches increases

12 MULTIPLE QUERY PROCESSING OVER XML:

In this section, we present our high-level query-processing architecture. We begin by illustrating how XML views
are created and queried in XPERANTO.

As a starting point, XPERANTO automatically creates a default XML view, which is a low-level XML view of
the underlying relational database. Users can then define their own views on top of the default view using XQuery.
Moreover, views can be defined on top of views to achieve higher levels of abstraction. The main advantage of
this approach is that a standard XML query language is used to create and query views. This is in contrast to
approaches where a proprietary language is used to define the initial XML view of the underlying relational
database.
The default XML view for a simple purchase-order database. As shown, the database consists of three tables, one
table to keep track of customer orders, a second table to keep track of the items associated with an order, and a
third table to keep track of the payments due for each order. Items and payments are related to orders by an order
id (oid).

13 CONCLUSION:

In this paper, we are present work p2p system. We then pro-pose a new p2p system work and first, this system
have important theme that’s through stating to ending process are satisfied and fully work doun and my second,
work is xml query processing system (over xml query operation)and six steps operation are work perform and
this steps through we get the After processing gives the actual output/result of query. So, it’s very important
for Peer-to-peer (P2P) systems adopt a completely decentralized approach to resource management. By
distributing data storage, processing and bandwidth across all peers in the network, they can scale without
the need for powerful servers and next Query processing system (over xml query operation)that’s through
easy to query processing system over XML.

IF : 3.62 | IC Value 70.36

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 17

 Volume-5, Issue-5, May - 2016 • ISSN No 2277 - 8160

REFERENCES:
1. M. Fernandez, A. Morishima, D. Suciu, “Efficient Evaluation of XML Middleware Queries”,

SIGMOD Conf., Santa Barbara, May 2001, pp. 103-114.

2. L. Lakshmanan, F. Sadri, I. Subramanian, “SchemaSQL – A Language for Interoperata-

bility in Relational Multi-Database Systems”, VLDB Conf., Mumbai, India, Sep. 1996,

pp. 239-250.

3. J. Shanmugasundaram, et. al., “XPERANTO: Bridging Relational Technology and XML”,

IBM Research Report, June 2001.

4. J. Cheng, J. Xu, “XML and DB2”, ICDE Conf., San Diego, March 2000, pp. 569-573.

5. M. Fernandez. W. Tan, D. Suciu, “SilkRoute: Trading Between Relations and XML”, World

Wide Web Conf., Toronto, Canada, Ma

6. Microsoft Corp. http://www.microsoft.com/XML.

7. R. Huebsch et al. Querying the Internet with PIER. VLDB Conf., 2003.

8. JXTA. http://www.

9. .A. Levy, A. Rajaraman, J. Ordille. Querying heterogeneous information sources using

source descriptions. VLDB Conf.,1996.jxta.org/.

10. M. Shapiro. A simple framework for understanding consistency with partial replication.

Technical Report, Microsoft Research, 2004.

11. J. Shanmugasundaram, et. al., “XPERANTO: Bridging Relational Technology and XML”,

IBM Research Report, June 2001.

12. P. Seshadri, H. Pirahesh, C. Leung, “Complex Query Decorrelation”, ICDE Conf., New

Orleans,

13. J. Shanmugasundaram, et. al., “Efficiently Publishing Relational Data as XML Docu-

ments”, VLDB Conf., Cairo, Egypt, Sep. 2000, pp. 65-76.

14. .P. Seshadri, H. Pirahesh, C. Leung, “Complex Query Decorrelation”, ICDE Conf., New

Orleans, Louisiana, March 1996, pp. 450-458.

