
IF : 3.62 | IC Value 70.36

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 255

 Volume-5, Issue-5, May - 2016 • ISSN No 2277 - 8160

Research Paper Commerce Engineering

Vulnerabilities of Openflow Network and Network Security
for SDN Network

Joshi Maulik Y PG Student, Venus International College of Technology

Prof.Aniruddh
Amin

HOD, E&C Department, Venus International College of Technology

Software-Defined Networking (SDN) is unique architecture that is centrally manageable, very dynamic, low in cost,
effective and adaptable. This architecture decouples the network functions as control plane and data plane functions.
SDN is programmable and the underlying infrastructure to be abstracted for applications and network services. In this

paper we provide a view on SDN/Openflow network, we will discuss the various types of vulnerabilities in the Openflow network and also the
impact on SDN/Openflow controller. We also discussed on importance of Transport Layer Security (TLS) in Openflow network and resolve the
issues which related to vulnerabilities in southbound interface.

ABSTRACT

KEYWORDS : SDN, Control Plane, Data Plane, Security

INTRODUCTION :
Network intelligence is (logically) centralized in software-based SDN
controllers, which maintain a global view of the network. As a result,
the network appears to the applications and policy engines as a sin-
gle, logical switch. With SDN, enterprises and carriers gain vendor
independent control over the entire network from a single logical
point, this greatly simplifies the network design and operation. SDN
is described in article with the Open Networking Foundation (ONF) [1]
definition: “In the SDN architecture, the control and data planes are
decoupled, network intelligence and state are logically centralized,
and the underlying network infrastructure is abstracted from the ap-
plications.”

Fig. 1. SDN Functional architecture [2]
The future SDN architecture is described in Fig. 1. This architecture en-
compasses complete network platform [2].

The bottom tier of Fig. 1 involves physical network equipment includ-
ing Ethernet switches and routers. This forms the data plane.

SDN mainly focuses on four key features [2]:
•	 Separation of the control plane and the data plane.
•	 Open interfaces between the control plane and the Data plane

devices.
•	 A centralized controller and view of the network.
•	 Programmability of the network by external administration.

The focal level comprises of controllers that encourage setting up and
tearing down streams and ways in the system. Controllers use data
about limit and request, acquired from the systems administration
hardware through which the activity streams. The focal level connec-
tions with the base level through an application programming inter-
face (API) alluded to as the southbound API. Associations between
controllers work with east and westward APIs. The controller to appli-
cation interface is alluded to as the northbound API [2].

Useful applications, for example, vitality proficient systems adminis-
tration, security observing, and get to control for operation and ad-
ministration of the system are spoken to at the highest point of Fig. 1
highlighting the client control/administration partition from the infor-

mation plane [2].

OPENFLOW SWITCH COMPONENTS
OpenFlow Switch which use openFlow protocol [5] and it is having 3
parts as shown in Fig.2: In SDN, OpenFlow Protocol is used as Com-
munication Protocol between Communication devices of OpenFlow
switches.

A flow table to indicate the switch as it has to process the flow. This
flow chart is composed of actions. A Secure channel necessary to
connect switch with a remote control device, for that TLS is used as
secure channel. Third component is Openflow protocol. Using this
protocol, Openflow provides a standard and open communication
between the controller and the switch. An OpenFlow Switch consists
of one or more flow tables and a group table, which perform pack-
et lookups and forwarding, and an OpenFlow channel to an external
controller [3].

Fig. 2. Openflow Switch [3]
OPEN FLOW PROTOCOL
Openflow Standard [4] defines an Openflow protocol for communi-
cation between Openflow switch and the controller. The Openflow
Switch must be able to establish communication with a controller at a
user-configurable IP address, using a user-specified port. If the switch
knows IP address of the controller, the switch initiates a standard TCP
connection to the controller. Openflow protocol supports three mes-
sages types : controller-to-switch, asynchronous, and symmetric

•	 Controller/switch messages are initiated by the controller and
may or may not require a response from the switch

•	 Asynchronous messages are sent without a controller soliciting
them from a switch. Switches send asynchronous messages to
controllers to denote a packet arrival or switch state change).

•	 Symmetric messages are sent without solicitation, in either di-
rection (Hello, Echo, Error, and Experimental).

IV. SDN/OPENFLOW CONTROLLERS
SDN controller is the main device; it is responsible for maintaining all
of the network rules and it distributes appropriate instructions for the
network devices. In others words, the Openflow controller is responsi-

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 256

Volume-5, Issue-5, May - 2016 • ISSN No 2277 - 8160 IF : 3.62 | IC Value 70.36

ble for determining how to handle packets without valid flow entries,
and it manages switch flow table by adding and removing flow en-
tries over the secure channel using Openflow protocol [3].

Controllers Features

NOX Multi-threaded C++-based controller written on top of
Boost library.

POX Single-threaded Python-based controller. fast
prototyping network applications in research

Beacon Multi-threaded Java-based controller that relies on
OSGi
and Spring frameworks.

Floodlight Multi-threaded Java-based controller that uses
Netty
framework.

MuL Multi-threaded C-based controller written on top
of
libevent and glib.

Ryu Single-threaded Python-based controller that uses
gevent
wrapper of libevent.

Maestro Multi-threaded Java-based
controller.

TABLE I. SDN/Openflow Controllers

Classification SDN/OpenFlow Controller
Physical networks of devices, where equipment that forwards packets
is actually located throughout the network

Software controllers, where software accesses and controls network
services

Centralized and Distributed:
Centralized controller due to having one centralized controlling unit is
beneficial for limited hosts but when the host increases, the central-
ized controllers face problem of bottleneck and it goes down so No
scalability.

Distributed Controller can overcome bottleneck problem but they
have to have some extra mechanism for supporting distributed char-
acteristic, which controller will act as a master, what will be extra ser-
vices of master controllers and all that, Example, Elasticon ,DISCO.

VULNERABILITY ANALYSIS
Controller Vulnerabilities
Attacks on and vulnerabilities in SDN controllers, are probably the
most threats to SDNs. A hack or malicious controller could compro-
mise the whole network. The use of a common intrusion detection
system may not be enough, as it may be hard to find the proper com-
bination of events that triggers a specific behavior and, importantly,
to label it as malicious. Similarly, a malicious application can effective-
ly do anything it changes in the network, since controllers only pro-
vide abstractions that translate into issuing configuration commands
to the underlying infrastructure.

Solution: We have multiple several techniques can be used, such as
replication (to detect, removal or mask abnormal behavior), employ
the diversity (of controllers, protocols, programming languages, soft-
ware images,), and recovery (periodically refreshing the system to a
clean and reliable state). It is very important to secure all the sensitive
elements inside the controller (e.g., crypto keys/secrets). Furthermore,
security policies enforcing correct behavior might be mapped onto
those techniques, restricting which interfaces an application can use
and what kind of rules it can generate to program the network (along
the lines of security-based prioritization).[8]

B. Control and Data plane communications Vulnerabilities
Using TLS/SSL, we can provide the security and it does not guarantee
secure communication, and that compromises the controller–device
link. Many more research papers report the issue of TLS/SSL commu-
nications and its major anchor of trust, the PKI infrastructure. The se-
curity of those communications is the weakest link in network, which
could be a self-signed certificate, a compromised Certificate Authori-
ty, or vulnerable applications and libraries.

There are so many man-in- the-middle vulnerable implementations of
SSL being used in critical systems. Moreover, the TLS/SSL model itself
is not enough to establish and assure trust between controllers and
switches. Once an attacker gains access to the control plane, it may
be capable of take control of whole network to launch DDoS attacks.
This lack of trust guarantees could even enable the creation of a vir-
tual black hole network (e.g., by using Open Flow-based slicing tech-
niques) allowing data leakages while the normal production traffic
flows.

Solutions: we can use of oligarchic trust models with multiple
trust-anchor certification authorities is a possibility. An-other is se-
curing communication with threshold cryptography across controller
replicas (where the switch will need at least n shares to get a valid
controller message). Additionally, the use of dynamic, automated and
assured device association mechanisms, one may consider, while in
order to guarantying trust between the control plane and data plane
devices.

VI. NEED OF TLS
Utilizing TLS has a higher specialized boundary for administrators to
arrange it accurately, which incorporate the accompanying: produc-
ing a site wide declaration, creating controller endorsements, creating
switch testaments, marking the authentications with the site wide
private key,

We require one confirmation parameter when we do not use TLS in
an operation to function, which may incentivize network administra-
tors to skip TLS completely and rapidly evolving nature of Open Flow,
many Switch and controller vendors have not fully implemented the
specification and have skipped the TLS portion entirely. The lack of
TLS support and lack of motivation to implement it leaves an avenue
for attackers to infiltrate Openflow networks and remain largely un-
detected. [9]

Controller Incorrect Invalid Incorrect Packet Port

Name Message Open Openflow In Status

Length flow Message Messa Message

Version type ge
NOX A C C C D

POX B B C D D

Floodlight B C C C D

Beacon B C C C D

MuL B B B B D

Maestro A C C C D
Ryu D D D C D

TABLE II. Security Analysis of different Controller under
different Circumstances

A denotes controller crashed, B denotes controller closed the connec-
tion, C denotes controller processed the message without crashing
or closing the connection, but the error was not detected, which is
possible security vulnerability and D denotes controller successfully
passed the test.

According to TABLE II, we found that mostly controllers are failed to
detect malformed packets and forwarded them to network, so Open-
flow network will become very insecure and confirmed vulnerability
in the openflow network.

VII.RELATED WORK
Security of SDN/Openflow controller is open issue and almost un-
explored, presenting many challenges and opportunities. There are
a few closely related works, specifically FRESCO. FRESCO [6] is an
Openflow security application development framework designed to
facilitate the rapid design, and modular composition of Openflow en-
abled detection and mitigation modules. Its main goal is to simplify
development of security functions. Each FRESCO module includes five
interfaces: input, output, event, parameter, and action. By simply as-
signing values to each interface and connecting necessary modules, a
FRESCO [6] developer can replicate a range of essential security func-
tions, such as

IF : 3.62 | IC Value 70.36

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 257

 Volume-5, Issue-5, May - 2016 • ISSN No 2277 - 8160

Firewalls, scan detectors, attack deflectors, or IDS detection logic.
FRESCO has benefit of 90% reduction in lines of code.

If we compare it to standard implementations its resource controller
component monitor switch status frequently and removes old flow
rules to reclaim space for new flow rules, which will be enforced by
FRESCO [6] applications.

Despite the success of openflow, developing and deploying complex
openflow security services remains a significant challenge. The secu-
rity of southbound interface; i.e. communication between control and
data plane is important. In one type of man in the middle attack, if
an attacker places a device between the controller and the switch to
intercept openflow traffic, he/she could insert additional rules into the
switch to record/modify sensitive traffic and gain access to protected
segments of the network. If this communication is in plain text form
then it is essential to provide some security mechanism. We have pro-
vided an approach for solving security related concern of southbound
interface by assigning confidentiality between control and data plane
communication. We have created a virtual environment, In Mininet
[7] we used two OF switch, which was connected to OF controller
and four hosts. We used beacon as a controller. Beacon controller gets
packet from OF switch and in reply beacon will generate packet_out
then beacon encrypts that packet_out and send this encrypted pack-
et to reference switch.

VIII. CONCLUSION
Despite the success of Openflow, developing and deploying complex
Openflow security services remain a significant challenge. In this pa-
per we have provided an overview on SDN/Openflow Network; how
does it work, its role of openflow controllers and most importantly,
we discussed some vulnerability issues that were discussed in recent
research work. In particular, security is a major issue and we debate
on the role of TLS and acknowledged a problem that relates to mal-
formed packet forwarding in controller, which can be a threat for the
openflow network. We have implanted the referral system with bea-
con controller and two switches connected to it and we ensured the
encrypted data flows in between. Here encryption is also not that
much secured in today’s world so in future we need to do more re-
search on how more security provided in SDN Network

REFERENCES
[1] ONF white paper, “Software-Defined Networking: The New Norm for Networks,” April

2012.

[2] Smeliansky R.L., “SDN for network security” Science and Technology Conference (MoN-

eTeC) IEEE, October 2014, pp. 1-5.

[3] R.Smeliansky, A. V. Shalimov, “Advanced Study of SDN/OpenFlow controllers,” Proceed-

ings of Eastern European Software Engineering Conference CEE-SECR, April 2013

10.1145/2556610.2556621, ISBN: 978-1-4503-2641-4.

 [4] Kevin Benton, L. Jean Camp, Chris Small, “OpenFlow Vulnerability Assessment,” Proceed-

ings of the second ACM SIGCOMM workshop on Hot topics in software defined net-

working ACM, August 2013.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenk-

er, and J. Turner, “Openflow: enabling innovation in campus networks.” ACM SIGCOMM

Computer Communication Review, 38(2):69–74, 2008.

[6] S. Shin, Porras, P., Yegneshwaran V., Fong, G. Gu, Tyson, “FRESCO: Modular Composable

Security Services for Software-Defined Networks,” In: Proceeding of the 20th Annual

Network And Distributed System Security Symposium (NDSS), Jan. 2013.

[7] D. Turull, M. Hidell, P. Sjödin, “Performance evaluation of openflow controllers for net-

work virtualization,” 2014 IEEE 15th International Conference on High Performance

Switching and Routing (HPSR), pp. 50-56, July.2014.

[8] OpenFlow Switch Specification Version 1.0 (Wire Protocol 0x01) Dec, 2009.

[9] https://www.opennetworking.org/sdn-resources/sdn-definition. Access on 07-06-2016.

