

with MATLAB simulation. The design example of a low voltage and PMDC Motor is developed.

KEYWORDS : Bridgeless, converter, Conduction, SEPIC, switching, speed.

INTRODUCTION

The SEPIC stands for single ended primary inductor converter. It is one of the type of DC-DC converter which is used in many other applications like mobile phone battery charger, electronic ballast, telecommunications and DC power supplies etc, In this converter the output voltage is may be buck or boost or same voltage as that of the supply voltage. The converter have been developed a new ZVS PWM SEPIC topology. It has low switching and conduction losses due to synchronous zero voltage switching and rectifier operation[1]. The SEPIC have been designed to increases the power factor correction in ac system, in order to achieve the high power factor[2]. The SEPIC input current and input voltage have been used to a certain extent, reducing the amount of lower order harmonics and resulting high power factor[3]. A new bridgeless PFC SEPIC converter have been designed for high power factor under universal input voltage condition[3]. A novel PFC topology have been developed by the valley-fill circuit into the DCM SEPIC derived converter, by implementing this topology. Solved bus capacitor voltage dependent on the output load issue and avoided high voltage stress in light load[4]. Two single phase bridgeless rectifiers with low input current distortion and low conduction losses have been obtained by implemented SEPIC compressed with CUK PFC converter. The size of inductor was reduced and obtained efficiency of SEPIC converter have been improved[5].Single switch bridgeless SEPIC converter have been developed and gave low switching loss compared to bridgeless double switch converter also efficiency.

In this proposed work the bridgeless SEPIC converter is developed for the speed control of PMDC motor. The Bridgeless SEPIC converter is designed for the energy elements of Inductors and capacitors. The values obtained are used in simulation. The conduction and switching losses are verified. The power factor improvement is verified with MATLAB simulink. The speed of the motor is controlled 900RPM to 1500RPM. Since switching time is reduced and the losses are minimized. This proposed converter carries full current in the coupling capacitor and hence this capacitor value to be selected to carry the full load current of the PMDC.

SEPIC CONVERTER

The SEPIC output is controlled by varying duty cycle of the power switches like MOSFET, IGBT, GTO etc. It is also similar to traditional buck-boost converter, it has one additional advantage that the output is non-inverted(output is same polarity as the input). Using series capacitor the couple of energy from input to output and being capable of true shutdown. When the switch is turned off the capacitor voltage false to 0V. SEPIC converter is operated in two mode as continuous conduction mode(CCM) and discontinuous conduction mode(DCM). DCM mode operation means the inductor current falls to zero.

A SEPIC said be in continuous-conduction mode means if the current through the inductor never falls to zero. During SEPIC steady state operation, While switch S1 is turned on current I_{L1} increases and the current I_{L2} current increase in negative direction. The energy to increase the current I_{L1} comes from the input supply since S1 is a short while closed and the instantaneous voltage V_{C1} approximately V_{IN} , the voltage V_{L2} is approximately $-V_{IN}$. Therefore, the capacitor C_1 supplies the energy to increase the magnitude of the current in I_{L2} and thus increase the energy stored in L_2 .

When the switch S_1 is turned off, the current IC1 becomes the same as the current IL1, since inductors do not allow instantaneous change in current. The current IL2 will continue in the negative direction, in fact it never reverses direction

PERMANENT MAGNET DC MOTOR

Permanent magnet DC motor is similar to an ordinary dc shunt motor except that its field is provided by permanent magnet instead of salient pole wound structure. There are three types of permanent magnet used for such motors, (i.e.) Alnico, ferrite and rare-earth magnets. These materials has high residual flux density and high coercivity. The armature consist of slots to the accommodated armature winding. In this motor, field controlled method of speed control is not possible but armature speed control is only possible in order to vary the input supply to the armature winding the motor speed is varying as much we desired value. In this type of motor below speed control only possible because of field having permanent magnet, suppose we increase the voltage above rated voltage means the motor insulation will become into failure and motor windings will be short circuited.

BRIDGELESS SEPIC CONVERTER

A conventional AC-DC SEPIC converts ac input into dc output. Converting process was done by means of diodes. During positive half cycle couple of the diode was conducting and negative half cycle another couple of the diode was conducting due to this, conduction loss and presence of power switches the switching loss also increased. It is an unavoidable one but conduction loss is avoidable one. A bridgeless SEPIC converter gives a low conduction loss and switching loss during switch turn on and turn off condition.

The bridgeless circuit also used to improve power factor in SEPIC converter during conversion of ac-dc. Here three identical inductor is used to reduce the ripple current and coupling capacitor is used to store the input voltage and boost voltage ,both capacitors are identical so that the voltage ripple also reduced. During positive half cycle all components conduct except D_{S1} , S_2 , C_2 , L_3 and D_{02} . During negative half cycle all components conduct except $D_{S2,S1}$, C_1 , L_2 and D_{01} . Eight components should be conducted at each half cycle compared to eleven in bridgeless SEPIC converter. In this circuit PID controller is used to vary the speed of the PMDC motor by varying pulse width to the SEPIC converter.

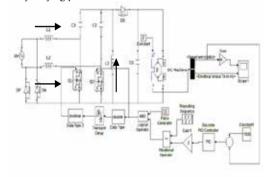


Fig.1.Bridgeless SEPIC converter circuit diagram.

CIRCUIT OPERATION

The operation of the converter will be explained assuming that the three inductors are working in DCM. Operating the SEPIC in DCM offers advantages over continuous-current mode (CCM) operation.

- Such as a near-unity power factor can be achieved naturally and without sensing the input line current.
- Also in DCM, both Q₁ and Q₂ are turned on at zero current. While the diode D_{S1} are turned off at zero current. Thus, the loss due to switching losses and the reverse recovery of the rectifier are considerably reduced.

(a) **MODE 1**: During positive half-line cycle, the first dc-dc SEPIC circuit, $L_1-Q_1-C_1-L_3-D_0$, is active through diode D_p , which connects the input ac source to the output ground.

When the switch Q_1 is turned on, diode D_p is forward biased by the inductor currents iL1 and iL2. As a result, diode D_N is reversed biased by the input voltage. The output diode is reversed biased by the reverse voltage ($V_{ac} + V_o$). In this stage, the inductor currents increase linearly at a rate proportional to the input voltage V_{ac} .

(b) **MODE 2**: During the negative half-line cycle, the second dc-dc SEPIC circuit, L_2 -Q₂-C₂-L₃-D₀, is active through diode D_N, which connects the input ac source to the output ground. Switch Q1 is turned-off, diode Do is turned-on simultaneously providing the path for the three inductor currents. Diode Dp remains conducting to provide a path for iL1 and iL2. In this stage, the three inductor currents decrease linearly at a rate proportional to the output voltage, Vo.

(c) **MODE 3**: Both Q1 and Do are in off-state. Diode Dp provides a path for iL3. The three inductors behave as current sources, which keep the currents constant. Hence, the voltage across the three inductors is zero. Capacitor C1 is charging up by iL1, whileC2 is discharged by iL2.

It should be mentioned here that if the two active switches Q1 and Q2 are implemented as standard MOSFET, then the body diode of Q2 will conduct during the first stage and the circuit will not function properly. In other words, there are reverse voltages applied to the activeswitches, so that the switches must have reverse blocking capability. Therefore, unidirectional current conducting device must be implemented for Q1 and Q2. In this case, turning ON or OFF Q2 during the first stage will not change the circuit operation mode. Accordingly, both of the switches, Q1 and Q2, can be driven by the same control signal, which helps in reducing the cost and complexity of the driving circuit.

The rate of increase of the three inductor currents are given by $\frac{d_{i_{En}}}{dt} = \frac{v_{ac}}{L_n}, \quad n = 0, 1, 2, 3$ (1)

The peak switch current I_{Q1} is given by

$$I_{Q1,pk} = \frac{v_m}{L_s} D_1 T_s$$
(2)
Where,
$$\frac{1}{L_s} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_g}$$
(3)

And D_1 is the switch duty cycle. This intervals ends when Q_1 is turned off, initiating the next subinterval.

DESIGN PROCEDURE FOR BRIDGELESS SEPIC

A simplified design procedure is presented in this section to determine the components values of the proposed converter. Suppose we would like to design the SEPIC converter with the following power stages specification.

- 1) Input voltage Vac =12 Vrms at 50Hz
- 2) Output voltage = Vo=15Vdc
- 3) Output power = 30Watts
- 4) Switching frequency = 330KHz

5)Maximum input ripple current $\Delta i_{L1} = 2$ of fundamental current

6) Output voltage ripple $\Delta v_0 = \pm 1\% \text{ of}$ The voltage conversion ratio M is $M = \frac{15}{12 * \sqrt{2}} = 0.88$ (4) The value of K_{e-} is $K_e < K_{e-orit} = \frac{1}{2(M+1)^2} = 0.147$ (5)

For values of $K_{\varepsilon} > K_{\varepsilon-}$, the converter operates in CCM; otherwise, the converter operates in DCM.

Inductance L_e value is

$$L_{g} = \frac{\kappa_{g} \kappa_{L}}{2 f_{g}} = 2.22 \mu H \qquad (6)$$

Inductances L₁,L₂ and L₃ value can be determined as follows,

$$L_{1} = \frac{f_{m}D_{1}}{f_{s}\Delta i_{L1}} = 10mH, \qquad (7)$$

$$L_{2} = L_{3} = \frac{2L_{1}L_{s}}{L_{1} - L_{s}} = 100mH \qquad (8)$$

The required output capacitance to maintain peak-peak output voltage ripple of 2% of Vo can be calculated as follows,

$$\Delta v_o = \frac{T_L V_o}{2C_o} \left[\frac{1}{R_o M^2} \left(\frac{1}{\pi} + \frac{1}{2} \right) - \frac{1}{R_L} \right]$$
(9)

And Co1, Co2 =1mF

The inductor ripple current is,

$$\bar{i}_{L1} = \frac{D_1^2 T_s v_{ac}}{2L_1} \left(1 + \frac{2v_{ac}}{v_o} \right) + i_x \tag{10}$$

$$\bar{i}_{c1} = \frac{D_1^2 T_s v_{ac}}{2} \left[\frac{2 v_{ac}}{v_o} \left(\frac{1}{L_s} - \frac{1}{L_2} \right) - \frac{1}{L_2} \right] - i_y$$
(11)

SIMULATION

A simulation performed at bridgeless SEPIC converter inductors and capacitors values are taken above mentioned value, Supply voltage and switching frequency are also specified value. The bridgeless SEPIC converter simulated waveforms are shown in fig.

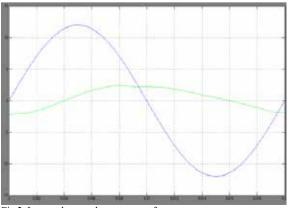


Fig.2. Input voltage and current waveforms.

Fig.3. Output voltage and current waveforms.

CONCLUSION

The bridgeless SEPIC converter design used for the speed control of permanent magnet DC motor. This paper Bridgeless SEPIC topology is used and having reduced switching and conduction losses with improved power factor, It is designed to work in Discontinuous Conduction Mode (DCM) to achieve the speed control of DC motor by varying the input supply to the armature. This converter is developed in MATLAB simulink and Performance are verified. The efficiency of this converter is obtained about 82.2%. The further improvement can be done in DSP controllers.

REFERENCES

- In-Dong Kimy, Jin-Young Kim, Eui-Cheol Nho, and Heung-Geun Kim "Analysis and Design of a Soft-Switched PWM Sepic DC-DC Converter" Journal of Power Electronics, Vol. 10, No. 5, September 2010,pp.461-467.
- [2] T. Raghu, S. Chandra Sekhar, J. Srinivas RaoJ. "SEPIC Converter based-Drive for Unipolar BLDC Motor"International Journal of Electrical and Computer Engineering (IJECE) Vol.2, No.2, April 2012, pp. 159~165.
- [3] M. R. Sahid*, A. H. M. Yatim*, Taufik Taufik**I, "A New AC-DC Converter Using Bridgeless SEPIC"2010 IEEE.
- [4]. Hongbo Ma, Student Member, IEEE, Jih-Sheng Lai, Fellow, IEEE, Quanyuan Feng, Senior Member, IEEE, Wensong Yu, Member, IEEE, Cong Zheng, Student Member, IEEE, and Zheng Zhao, Student Member, "A Novel Valley-Fill SEPIC-derived Power Supply", ieee transactions on power electronics, vol. 27, no. 6, june 2012.
- [5] Ahmad J. Sabzali, Esam H. Ismail, and Mustafa A. Al-Saffar Member, IEEE, Senior Member, IEEE, Member, IEEE Abbas A. Fardoun Senior Member, IEEE.[6] Hyunsoo Koh, "Modeling and Control of Single Switch Bridgeless SEPIC PFC Converter" July 13, 2012, Blacksburg, Virginia.