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1. INTRODUCTION: 

We know that the length-biased distribution has very widely applications in biomedical area 

such as family history and disease, survival and intermediate events and latency period of 

AIDS due to blood transfusion. Gupta and Akman were first to study about this in 1995. They 

developed and presented an article on the study of human families and wildlife populations. It 

included a list of the most common forms of the weight function useful in scientific and 

statistical literature which was deeply studied by Patill and Rao in 1978 and developed further 

in 1986. Moreover, there were some basic theorems for weighted distributions and size-biased 

as a special case. Finally, the conclusion was made that the length-biased version of some 

mixture of discrete distributions arises as a mixture of the length-biased version of these 

distributions. A significant work was done to characterize relationships between original 

distributions and their length biased versions and therefore it became necessary to work further 

on this aspect. It was in the year 1978 that Patill and Rao gave a table for some basic 

distributions and their length biased forms such as Beta, Gamma, Lognormal and Pareto 

distributions. The weighted version of the bivariate three-parameter logarithmic series 

distribution was studied by Gupta and Tripathi in 1996. It has wide applications in many fields 

such as ecology, social and behavioral sciences and species abundance studies. 

Let us assume that X be a random variable following the Weibull distribution with pdf as 

under: 

 𝑔𝑔(x) =θ β xβ−1 exp (−θ xβ )    

where x ≥0, β >0,θ >0       (1)    

Here β is the shape parameter and θ scale parameter. We know that Weibull distribution is 

very flexible and this is due to its application in modeling in both the cases, viz. increasing 

(β > 1) as well as decreasing (β < 1) failure rates.  

Moreover, we have E(X) =Γ𝛽𝛽−1 𝛽𝛽𝜃𝜃𝛽𝛽−1⁄ . 

Let T be a non negative random variable, T is said to have the Weibull length-biased 

distribution it will be abbreviated as WLB if its density function is given by: 

                               𝑓𝑓 (t) = 𝛽𝛽
2𝜃𝜃(1

𝛽𝛽+1) 𝑡𝑡𝛽𝛽 𝑒𝑒−𝜃𝜃𝑡𝑡𝛽𝛽

Γ1
𝛽𝛽

  where 𝛽𝛽,θ >0 and t >0 (2) 

The density (2) can be obtained by combining the definition of the length- biased 

distribution given by: 

  𝑓𝑓(t)=𝑡𝑡𝑡𝑡(𝑡𝑡)
𝐸𝐸(𝑡𝑡)       (3) 

It can be explained as follows: 

Suppose that the lifetime of a given sample of items follows Weibull Distribution and the 

density of the original distribution given in (2). As per the property of this distribution, the 

item doesn’t have the same chance of being selected but each one is selected according to 

its length or life length then the resulting distribution is neither Weibull nor Weibull Length 

Biased. The resultant distribution becomes the special case which we term as Weighted 

Weibull Length-Biased Distribution. 

The reliability function is given by: 



IF : 3.62 | IC Value 70.36

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS  X 397 

       Volume-5, Issue-5, May - 2016 • ISSN No 2277 - 8160

 𝑔𝑔(x) =θ β xβ−1 exp (−θ xβ )    

where x ≥0, β >0,θ >0       (1)    

Here β is the shape parameter and θ scale parameter. We know that Weibull distribution is 

very flexible and this is due to its application in modeling in both the cases, viz. increasing 

(β > 1) as well as decreasing (β < 1) failure rates.  

Moreover, we have E(X) =Γ𝛽𝛽−1 𝛽𝛽𝜃𝜃𝛽𝛽−1⁄ . 

Let T be a non negative random variable, T is said to have the Weibull length-biased 

distribution it will be abbreviated as WLB if its density function is given by: 

                               𝑓𝑓 (t) = 𝛽𝛽
2𝜃𝜃(1

𝛽𝛽+1) 𝑡𝑡𝛽𝛽 𝑒𝑒−𝜃𝜃𝑡𝑡𝛽𝛽

Γ1
𝛽𝛽

  where 𝛽𝛽,θ >0 and t >0 (2) 

The density (2) can be obtained by combining the definition of the length- biased 

distribution given by: 

  𝑓𝑓(t)=𝑡𝑡𝑡𝑡(𝑡𝑡)
𝐸𝐸(𝑡𝑡)       (3) 

It can be explained as follows: 

Suppose that the lifetime of a given sample of items follows Weibull Distribution and the 

density of the original distribution given in (2). As per the property of this distribution, the 

item doesn’t have the same chance of being selected but each one is selected according to 

its length or life length then the resulting distribution is neither Weibull nor Weibull Length 

Biased. The resultant distribution becomes the special case which we term as Weighted 

Weibull Length-Biased Distribution. 

The reliability function is given by: 



GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS  X 398 

Volume-5, Issue-5, May - 2016 • ISSN No 2277 - 8160          IF : 3.62 | IC Value 70.36

 𝑅𝑅(𝑡𝑡) = 1 −
𝛽𝛽𝛽𝛽(1

𝛽𝛽+1,𝜃𝜃𝑡𝑡𝛽𝛽)

Γ1
𝛽𝛽

        (4) 

 Here, we note that the numerator represents the incomplete gamma function as: 

𝛾𝛾(𝑎𝑎, 𝑥𝑥) = ∫ 𝑡𝑡𝑎𝑎−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑡𝑡𝑥𝑥
0       (5) 

2. PROPOSED CHANGE POINT MODEL: 

Let   𝑇𝑇1, 𝑇𝑇, 𝑇𝑇3 . . . , 𝑇𝑇𝑛𝑛 (n ≥ 3) be a sequence of observed life time data. Let first ‘m’ 

obsesrvations 𝑇𝑇1, 𝑇𝑇2,  . . . , 𝑇𝑇𝑚𝑚  have come from the Weighted Weibull Length Biased 

distribution with probability density function WWLB (𝛽𝛽,θ1). 

f(𝑡𝑡𝑖𝑖) = 𝛽𝛽 𝜃𝜃1
2  𝑡𝑡𝑖𝑖

2𝛽𝛽−1   𝑒𝑒−𝜃𝜃1 𝑡𝑡𝑖𝑖
𝛽𝛽 

 where  i=1,2,…,m 

and   later (n-m) observations coming from the Weighted  Weibull Length Biased with 

probability density function WWLB (𝛽𝛽,θ2) 

f(𝑡𝑡𝑖𝑖) = 𝛽𝛽 𝜃𝜃2
2  𝑡𝑡𝑖𝑖

2𝛽𝛽−1   𝑒𝑒−𝜃𝜃2 𝑡𝑡𝑖𝑖
𝛽𝛽 

 where i=m+1,…,n   (6) 

where β , 𝜃𝜃1, 𝜃𝜃2>0 

The likelihood function, given the sample information 

 T = (𝑇𝑇1, 𝑇𝑇2, … 𝑇𝑇𝑚𝑚, 𝑇𝑇𝑚𝑚+1, … 𝑇𝑇𝑛𝑛)    is  

L(𝜃𝜃1,𝜃𝜃2,𝛽𝛽, 𝑚𝑚| T) = 𝛽𝛽𝑛𝑛𝜃𝜃1
2𝑚𝑚𝐴𝐴1

2𝛽𝛽−1𝑒𝑒−𝜃𝜃1𝐴𝐴2𝜃𝜃2
2(𝑛𝑛−𝑚𝑚)𝑒𝑒−𝜃𝜃2𝐴𝐴3  (7) 

where 𝐴𝐴1 = ∏ 𝑡𝑡𝑖𝑖
𝑛𝑛
𝑖𝑖=1  

            𝐴𝐴2=𝐴𝐴2(𝑚𝑚, 𝛽𝛽 /𝑡𝑡𝑖𝑖) =  ∑ 𝑡𝑡𝑖𝑖
𝛽𝛽𝑚𝑚

𝑖𝑖=1  

            𝐴𝐴3=𝐴𝐴3(𝑚𝑚, 𝛽𝛽 /𝑡𝑡𝑖𝑖) =  ∑ 𝑡𝑡𝑖𝑖
𝛽𝛽𝑛𝑛

𝑖𝑖=𝑚𝑚+1      (8) 
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3. POSTERIOR DISTRIBUTION FUNCTIONS USING INFORMATIVE 

PRIOR: 

Let us assume that the marginal prior distribution of ‘m’ be following discrete uniform 

distribution over the set {1, 2,…,n – 1} citing the research work of Broemeling et al.(1987). 

So we take 𝑔𝑔 (m) = 1
𝑛𝑛−1       (9) 

   We cite the research work of Calabria and Pulcini carried out in 1992 and suppose the marginal 

prior distribution on 𝛽𝛽 to be uniform over the interval 𝛽𝛽1,𝛽𝛽2 as under: 

                    𝑔𝑔 (𝛽𝛽) = 1
𝛽𝛽2−𝛽𝛽1

     𝛽𝛽1 ≤ 𝛽𝛽 ≤ 𝛽𝛽2     (10) 

Further we also cite the phenomenal research work of N. Sanjari Farsipour and H. Zakerzadeh 

done in the year 2005. As per their work, we assume that the scale parameters 𝜃𝜃1 and 𝜃𝜃2 are 

unknown and we take the Inverted Gamma prior with probability density functions with respective 

means values 𝜇𝜇1, 𝜇𝜇2 and common standard deviation 𝜎𝜎 as under: 

 𝑔𝑔 (𝜃𝜃1 𝛽𝛽⁄ )=𝑎𝑎1𝛽𝛽

Γβ
 𝜃𝜃1

−(𝛽𝛽+1) 𝑒𝑒
−𝑎𝑎1 𝜃𝜃1⁄  

 𝑔𝑔 (𝜃𝜃2 𝛽𝛽⁄ )=𝑎𝑎2𝛽𝛽

Γβ
 𝜃𝜃2

−(𝛽𝛽+1) 𝑒𝑒
−𝑎𝑎2 𝜃𝜃2⁄      𝑎𝑎𝑖𝑖, β > 0, 𝜃𝜃𝑖𝑖 > 0 , i = 1,2 (11) 

It is quite clear that this prior distribution has significant advantages over many other distributions 

because of its analytical tractability, richness and interpretability. 

Let the prior information be given in terms of the prior means 𝜇𝜇1, 𝜇𝜇2 and variances𝜎𝜎1
2,𝜎𝜎2

2. Then 

 𝜇𝜇𝑖𝑖 = 𝐸𝐸[𝜃𝜃𝑖𝑖]= 𝑎𝑎𝑖𝑖
β−1 and 𝜎𝜎𝑖𝑖

2 =  𝑎𝑎𝑖𝑖2

(β−1)2(β−2) i=1, 2, which gives  
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  𝑎𝑎𝑖𝑖 =  𝜇𝜇𝑖𝑖( 𝜇𝜇𝑖𝑖2

𝜎𝜎𝑖𝑖2 + 1) and  𝛽𝛽=2+ (𝜇𝜇𝑖𝑖2

𝜎𝜎𝑖𝑖2) where i=1, 2      (12) 

Thus if we have prior knowledge of 𝜇𝜇1, 𝜇𝜇2 and 𝜎𝜎1
2, 𝜎𝜎2

2 then the Inverted gamma parameters𝑎𝑎𝑖𝑖, 𝛽𝛽, 

where i=1, 2 can be obtained from (12). 

We assume that 𝜃𝜃1, 𝜃𝜃2, β and  𝑚𝑚  are priori independent. The joint prior density will be: 

 𝑔𝑔(𝜃𝜃1, 𝜃𝜃2, β , 𝑚𝑚)= 1
𝑛𝑛−1

1
𝛽𝛽2−𝛽𝛽1

𝑎𝑎1𝛽𝛽

Γβ
 𝜃𝜃1

−(𝛽𝛽+1) 𝑒𝑒
−𝑎𝑎1 𝜃𝜃1⁄ 𝑎𝑎2𝛽𝛽

Γβ
 𝜃𝜃2

−(𝛽𝛽+1) 𝑒𝑒
−𝑎𝑎2 𝜃𝜃2⁄  

                               =𝐾𝐾1
𝑎𝑎1𝛽𝛽

Γβ
 𝜃𝜃1

−(𝛽𝛽+1) 𝑒𝑒
−𝑎𝑎1 𝜃𝜃1⁄ 𝑎𝑎2𝛽𝛽

Γβ
 𝜃𝜃2

−(𝛽𝛽+1) 𝑒𝑒
−𝑎𝑎2 𝜃𝜃2⁄  

where   𝐾𝐾1 = 1
𝑛𝑛−1

1
𝛽𝛽2−𝛽𝛽1

      (13) 

The joint posterior density of parameters 𝜃𝜃1, 𝜃𝜃2, 𝛽𝛽, and  𝑚𝑚 is obtained using the likelihood function 

(7) and the joint prior density of the parameters in (13) as under: 

𝑔𝑔(𝜃𝜃1, 𝜃𝜃2, 𝛽𝛽, 𝑚𝑚 | T) = 𝐿𝐿(𝜃𝜃1, 𝜃𝜃2, 𝛽𝛽, 𝑚𝑚|t)𝑔𝑔(𝜃𝜃1, 𝜃𝜃2, 𝛽𝛽, 𝑚𝑚)
ℎ(t)

                =

𝛽𝛽𝑛𝑛𝜃𝜃1
2𝑚𝑚𝐴𝐴1

2𝛽𝛽−1𝑒𝑒−𝜃𝜃1𝐴𝐴2𝜃𝜃2
2(𝑛𝑛−𝑚𝑚)𝑒𝑒−𝜃𝜃2𝐴𝐴3 𝐾𝐾1

𝑎𝑎1𝛽𝛽

Γβ
 𝜃𝜃1

−(𝛽𝛽+1) 𝑒𝑒
−𝑎𝑎1 𝜃𝜃1⁄ 𝑎𝑎2𝛽𝛽

Γβ
 𝜃𝜃2

−(𝛽𝛽+1) 𝑒𝑒
−𝑎𝑎2 𝜃𝜃2⁄  ℎ−1(T) 

=𝐾𝐾1
𝑎𝑎1𝛽𝛽

Γβ
𝑎𝑎2𝛽𝛽

Γβ
𝐴𝐴1

2𝛽𝛽−1𝛽𝛽𝑛𝑛 𝜃𝜃1
2𝑚𝑚−𝛽𝛽−1𝑒𝑒−(𝜃𝜃1𝐴𝐴2+𝑎𝑎1 𝜃𝜃1⁄ )𝜃𝜃2

2(𝑛𝑛−𝑚𝑚)−𝛽𝛽−1𝑒𝑒−(𝜃𝜃2𝐴𝐴3+𝑎𝑎2 𝜃𝜃2⁄ ) ℎ−1(T)       (14) 

Here, ℎ(T) is the marginal posterior density of T. 

ℎ(T) = ∑ ∫ ∫ ∫ 𝐿𝐿(𝜃𝜃1, 𝜃𝜃2, β, 𝑚𝑚|t)𝑔𝑔(𝜃𝜃1, 𝜃𝜃2, β, 𝑚𝑚) d𝜃𝜃1 d𝜃𝜃2 dβ∞
0

∞
0

β2
β1

𝑛𝑛−1
𝑚𝑚=1                                                                                   

           = ∑ 𝐾𝐾1 ∫ 𝑎𝑎1𝛽𝛽

Γβ
𝑎𝑎2𝛽𝛽

Γβ
( 1
Γ1

𝛽𝛽
)

𝑛𝑛
𝐴𝐴1

2𝛽𝛽−1𝛽𝛽𝑛𝑛β2
β1

𝑛𝑛−1
𝑚𝑚=1 {∫  𝜃𝜃1

2𝑚𝑚−𝛽𝛽−1𝑒𝑒−(𝜃𝜃1𝐴𝐴2+𝑎𝑎1 𝜃𝜃1⁄ ) d𝜃𝜃1
∞

0



IF : 3.62 | IC Value 70.36

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS  X 401 

       Volume-5, Issue-5, May - 2016 • ISSN No 2277 - 8160

∫ 𝜃𝜃2
2(𝑛𝑛−𝑚𝑚)−𝛽𝛽−1𝑒𝑒−(𝜃𝜃2𝐴𝐴3+𝑎𝑎2 𝜃𝜃2⁄ ) d𝜃𝜃2} dβ∞

0             

  =∑ 𝐾𝐾1 ∫ 𝑎𝑎1𝛽𝛽

Γβ
𝑎𝑎2𝛽𝛽

Γβ
𝐴𝐴1

2𝛽𝛽−1𝛽𝛽𝑛𝑛𝐼𝐼1(m, β)β2
β1

𝑛𝑛−1
𝑚𝑚=1 𝐼𝐼2(m, β) dβ   (15) 

where 𝐼𝐼1(m, β)= ∫  𝜃𝜃1
2𝑚𝑚−𝛽𝛽−1𝑒𝑒−(𝜃𝜃1𝐴𝐴2+𝑎𝑎1 𝜃𝜃1⁄ ) d𝜃𝜃1

∞
0  

 = 2𝐴𝐴2
−[2𝑚𝑚−𝛽𝛽] 2⁄ [ 1

𝑎𝑎1
]

−[2𝑚𝑚−𝛽𝛽] 2⁄
 Bessel K [−2𝑚𝑚 + 𝛽𝛽, 2√𝑎𝑎1√𝐴𝐴2]   (16) 

          𝐼𝐼2(m, β)= ∫ 𝜃𝜃2
2(𝑛𝑛−𝑚𝑚)−𝛽𝛽−1𝑒𝑒−(𝜃𝜃2𝐴𝐴3+𝑎𝑎2 𝜃𝜃2⁄ ) d𝜃𝜃2

∞
0  

     = 2𝐴𝐴3
−[2(𝑛𝑛−𝑚𝑚)−𝛽𝛽] 2⁄ [ 1

𝑎𝑎2
]

−[2(𝑛𝑛−𝑚𝑚)−𝛽𝛽] 2⁄
 Bessel K [−2(𝑛𝑛 − 𝑚𝑚) + 𝛽𝛽, 2√𝑎𝑎2√𝐴𝐴3]    (17) 

where Bessel K[−2𝑚𝑚 + 𝛽𝛽, 2√𝑎𝑎1√𝐴𝐴2]  and  

Bessel K[−2(𝑛𝑛 − 𝑚𝑚) + 𝛽𝛽, 2√𝑎𝑎2√𝐴𝐴3]   are  defined as  

∫ 𝑏𝑏−1−𝑚𝑚∞
0  𝑒𝑒−(𝑏𝑏𝑏𝑏+𝑑𝑑/𝑏𝑏)𝑑𝑑𝑏𝑏 = 2(𝑐𝑐/𝑑𝑑)𝑚𝑚/2 𝐵𝐵𝑒𝑒𝐵𝐵𝐵𝐵𝑒𝑒𝐵𝐵 𝐾𝐾[𝑚𝑚, 2√𝑐𝑐√𝑑𝑑] (18) 

The marginal density of 𝜃𝜃1 say 𝑔𝑔(𝜃𝜃1|T)is as, 

𝑔𝑔(𝜃𝜃1|T) = 𝐾𝐾1 ∑ ∫ ∫ 𝑔𝑔(𝜃𝜃1, 𝜃𝜃2, β|T) d𝜃𝜃2 dβ∞
0

β2
β1

𝑛𝑛−1
𝑚𝑚=1   

                  = 𝐾𝐾1 ∑ 𝜃𝜃1
2𝑚𝑚−𝛽𝛽−1𝑒𝑒−(𝜃𝜃1𝐴𝐴2+𝑎𝑎1 𝜃𝜃1⁄ )𝑛𝑛−1

𝑚𝑚=1 2𝐴𝐴3
−[2(𝑛𝑛−𝑚𝑚)−𝛽𝛽] 2⁄  

  [ 1
𝑎𝑎2

]
−[2(𝑛𝑛−𝑚𝑚)−𝛽𝛽] 2⁄

Bessel K[−2(𝑛𝑛 − 𝑚𝑚) + 𝛽𝛽, 2√𝑎𝑎2√𝐴𝐴3] ∫ 𝑎𝑎1𝛽𝛽

Γβ
𝑎𝑎2𝛽𝛽

Γβ
𝐴𝐴1

2𝛽𝛽−1𝛽𝛽𝑛𝑛β2
β1

dβ ℎ−𝟏𝟏(T)   (19)          

where Bessel K[−2(𝑛𝑛 − 𝑚𝑚) + 𝛽𝛽, 2√𝑎𝑎2√𝐴𝐴3]   is same as in (18). 
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The marginal density of 𝜃𝜃2 say 𝑔𝑔(𝜃𝜃2|T) is as, 

𝑔𝑔(𝜃𝜃2|T) = 𝐾𝐾1 ∑ ∫ ∫ 𝑔𝑔(𝜃𝜃1, 𝜃𝜃2, β|T) d𝜃𝜃1 dβ∞
0

β2
β1

𝑛𝑛−1
𝑚𝑚=1   

                   =𝐾𝐾1 ∑ 𝜃𝜃2
2(𝑛𝑛−𝑚𝑚)−𝛽𝛽−1𝑒𝑒−(𝜃𝜃2𝐴𝐴3+𝑎𝑎2 𝜃𝜃2⁄ )𝑛𝑛−1

𝑚𝑚=1 2𝐴𝐴2
−[2𝑚𝑚−𝛽𝛽] 2⁄  

                      [ 1
𝑎𝑎1

]
−[2𝑚𝑚−𝛽𝛽] 2⁄

 Bessel K [−2𝑚𝑚 + 𝛽𝛽, 2√𝑎𝑎1√𝐴𝐴2] 

                     ∫ 𝑎𝑎1𝛽𝛽

Γβ
𝑎𝑎2𝛽𝛽

Γβ
𝐴𝐴1

2𝛽𝛽−1𝛽𝛽𝑛𝑛β2
β1

 dβ ℎ−𝟏𝟏(T)    (20) 

  where Bessel K[−2𝑚𝑚 + 𝛽𝛽, 2√𝑎𝑎1√𝐴𝐴2] is same as in (18). 

 

The marginal density of  𝛽𝛽, say 𝑔𝑔(𝛽𝛽|T) will be as under: 

𝑔𝑔(𝛽𝛽|T) = 𝐾𝐾1 ∑ ∫ ∫ 𝑔𝑔(𝜃𝜃1, 𝜃𝜃2, β|T) d𝜃𝜃1 d𝜃𝜃2
∞

0
∞

0
𝑛𝑛−1
𝑚𝑚=1   

           = 𝐾𝐾1 ∑ 2𝐴𝐴2
−[2𝑚𝑚−𝛽𝛽] 2⁄𝑛𝑛−1

𝑚𝑚=1  [ 1
𝑎𝑎1

]
−[2𝑚𝑚−𝛽𝛽] 2⁄

Bessel K [−2𝑚𝑚 + 𝛽𝛽, 2√𝑎𝑎1√𝐴𝐴2] 2𝐴𝐴3
−[2(𝑛𝑛−𝑚𝑚)−𝛽𝛽] 2⁄  

[ 1
𝑎𝑎2

]
−[2(𝑛𝑛−𝑚𝑚)−𝛽𝛽] 2⁄

Bessel K[−2(𝑛𝑛 − 𝑚𝑚) + 𝛽𝛽, 2√𝑎𝑎2√𝐴𝐴3] 𝑎𝑎1𝛽𝛽

Γβ
𝑎𝑎2𝛽𝛽

Γβ 𝐴𝐴1
2𝛽𝛽−1𝛽𝛽𝑛𝑛 ℎ−𝟏𝟏(T) (21) 

where Bessel K[−2𝑚𝑚 + 𝛽𝛽, 2√𝑎𝑎1√𝐴𝐴2]  and  

Bessel K [−2(𝑛𝑛 − 𝑚𝑚) + 𝛽𝛽, 2√𝑎𝑎2√𝐴𝐴3]   are  same as in (18). 

 

 Marginal posterior density of m say, 𝑔𝑔(𝒎𝒎 |T ) is taken as under: 
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𝑔𝑔(𝒎𝒎 |T ) =  𝐾𝐾1 𝑰𝑰𝟑𝟑(m) ℎ−𝟏𝟏(T)    

                      =  𝑰𝑰𝟑𝟑(𝐦𝐦)/ ∑ 𝑰𝑰𝟑𝟑(𝐦𝐦)𝐧𝐧−𝟏𝟏
𝐦𝐦=𝟏𝟏       (22)                           

where 𝑰𝑰𝟑𝟑(𝐦𝐦) = ∫ 𝑎𝑎1𝛽𝛽

Γβ
𝑎𝑎2𝛽𝛽

Γβ 𝐴𝐴1
2𝛽𝛽−1𝛽𝛽𝑛𝑛 𝐼𝐼1(m, β)𝐼𝐼2(m, β)β2

β1
dβ   (23) 

where  𝐼𝐼1(m, β) , 𝐼𝐼2(m, β) are same as in (16) and (17) respectively. 

4. BAYES ESTIMATES UNDER ASYMMETRIC LOSS FUNCTION USING 

INFORMATIVE PRIOR: 

In this section, we have obtained Bayes estimates of the change point and 

parameters 𝜃𝜃1 and 𝜃𝜃2. Here we have used a very useful asymmetric loss function known as the 

Linex Loss Function. It was introduced by Varian in 1975. 

Minimizing the posterior expectation of the Linex loss function Em [𝐿𝐿4 (m, d)], where  

Em [𝐿𝐿4 (m, d)] denotes the expectation of 𝐿𝐿4 (m, d) with respect to posterior density 𝑔𝑔(𝒎𝒎 |T ). 

We get the Bayes estimate of ‘m’ by means of the nearest integer value, say mL
* , using Linex 

Loss Function as under: 

 𝑚𝑚𝐿𝐿
∗ = − 1

𝑞𝑞1
ln[𝐸𝐸(𝑒𝑒−m𝑞𝑞1)] 

 = − 1
𝑞𝑞1

ln [∑ 𝑒𝑒−m𝑞𝑞1𝐼𝐼3(m)𝑛𝑛−1
𝑚𝑚=1

∑ 𝐼𝐼3(m)𝑛𝑛−1
𝑚𝑚=1

]      (21) 

where  𝐼𝐼3(m) same as in (23). 

Minimizing expected loss function 𝐸𝐸𝜃𝜃1[𝐿𝐿4 (𝜃𝜃1, d)] and using posterior distribution (19) and we get 

the Bayes estimates of 𝜃𝜃1, using Linex loss function as 
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𝜃𝜃1𝐿𝐿
∗ = − 1

𝑞𝑞1
ln[𝐸𝐸(𝑒𝑒−𝜃𝜃1𝑞𝑞1)] 

     = − 1
𝑞𝑞1

ln[∫ 𝑔𝑔1(𝜃𝜃1|X). 𝑒𝑒−𝜃𝜃1𝑞𝑞1 d𝜃𝜃1
∞

0 ]  

= − 1
𝑞𝑞1

ln[𝐾𝐾1 ∑ ∫ [𝜃𝜃1
2𝑚𝑚−𝛽𝛽−1𝑒𝑒−(𝜃𝜃1𝐴𝐴2+𝑎𝑎1 𝜃𝜃1⁄ +𝜃𝜃1𝑞𝑞1)  d𝜃𝜃1

∞

0
𝑛𝑛−1
𝑚𝑚=1 ] 2𝐴𝐴3

−[2(𝑛𝑛−𝑚𝑚)−𝛽𝛽] 2⁄

    [ 1
𝑎𝑎2

]
−[2(𝑛𝑛−𝑚𝑚)−𝛽𝛽] 2⁄

Bessel K[−2(𝑛𝑛 − 𝑚𝑚) + 𝛽𝛽, 2√𝑎𝑎2√𝐴𝐴3]  

∫ 𝑎𝑎1𝛽𝛽

Γβ
𝑎𝑎2𝛽𝛽

Γβ 𝐴𝐴1
2𝛽𝛽−1𝛽𝛽𝑛𝑛 β2

β1
dβℎ−1(T)]

= − 1
𝑞𝑞1

ln [𝐾𝐾1 ∑ 2{𝑛𝑛−1
𝑚𝑚=1 𝐴𝐴2 + 𝑞𝑞1}−[2𝑚𝑚−𝛽𝛽] 2⁄ [ 1

𝑎𝑎1
]

−[2𝑚𝑚−𝛽𝛽] 2⁄

−2𝑚𝑚 + 𝛽𝛽, 2√𝑎𝑎1√𝐴𝐴2 + 𝑞𝑞1 

     2𝐴𝐴3
−[2(𝑛𝑛−𝑚𝑚)−𝛽𝛽] 2⁄ [ 1

𝑎𝑎2
]

−[2(𝑛𝑛−𝑚𝑚)−𝛽𝛽] 2⁄
Bessel K[−2(𝑛𝑛 − 𝑚𝑚) + 𝛽𝛽, 2√𝑎𝑎2√𝐴𝐴3]   

∫ 𝑎𝑎1𝛽𝛽

Γβ
𝑎𝑎2𝛽𝛽

Γβ 𝐴𝐴1
2𝛽𝛽−1𝛽𝛽𝑛𝑛 β2

β1
dβℎ−1(T)

−2𝑚𝑚 + 𝛽𝛽, 2√𝑎𝑎1√𝐴𝐴2 + 𝑞𝑞1

−2(𝑛𝑛 − 𝑚𝑚) + 𝛽𝛽, 2√𝑎𝑎2√𝐴𝐴3

𝐸𝐸𝜃𝜃1 𝐿𝐿4 𝜃𝜃2 posterior distribution

 𝜃𝜃2  

𝜃𝜃2𝐿𝐿
∗ = − 1

𝑞𝑞1
ln[𝐸𝐸(𝑒𝑒−𝜃𝜃2𝑞𝑞1)]

= − 1
𝑞𝑞1

ln[∫ 𝑔𝑔1(𝜃𝜃2|X). 𝑒𝑒−𝜃𝜃2𝑞𝑞1 d𝜃𝜃2
∞

0 ]
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= − 1
𝑞𝑞1

ln[𝐾𝐾1 ∑ ∫ 𝜃𝜃2
2(𝑛𝑛−𝑚𝑚)−𝛽𝛽−1𝑒𝑒−(𝜃𝜃2𝐴𝐴3+𝑎𝑎2 𝜃𝜃2⁄ )𝑒𝑒−𝜃𝜃2𝑞𝑞1 d𝜃𝜃2

∞

0
𝑛𝑛−1
𝑚𝑚=1 ] 2𝐴𝐴2

−[2𝑚𝑚−𝛽𝛽] 2⁄

       [ 1
𝑎𝑎1

]
−[2𝑚𝑚−𝛽𝛽] 2⁄

−2𝑚𝑚 + 𝛽𝛽, 2√𝑎𝑎1√𝐴𝐴2

∫ 𝑎𝑎1𝛽𝛽

Γβ
𝑎𝑎2𝛽𝛽

Γβ 𝐴𝐴1
2𝛽𝛽−1𝛽𝛽𝑛𝑛 β2

β1
dβ ℎ−1(T)] 

= − 1
𝑞𝑞1

ln[ 𝐾𝐾1 ∑ 2{𝐴𝐴3 + 𝑞𝑞1}−[2(𝑛𝑛−𝑚𝑚)−𝛽𝛽] 2⁄𝑛𝑛−1
𝑚𝑚=1

       [ 1
𝑎𝑎2

]
−[2(𝑛𝑛−𝑚𝑚)−𝛽𝛽] 2⁄

Bessel K[−2(𝑛𝑛 − 𝑚𝑚) + 𝛽𝛽, 2√𝑎𝑎2√𝐴𝐴3 + 𝑞𝑞1]   

       2𝐴𝐴2
−[2𝑚𝑚−𝛽𝛽] 2⁄ [ 1

𝑎𝑎1
]

−[2𝑚𝑚−𝛽𝛽] 2⁄
−2𝑚𝑚 + 𝛽𝛽, 2√𝑎𝑎1√𝐴𝐴2

∫ 𝑎𝑎1𝛽𝛽

Γβ
𝑎𝑎2𝛽𝛽

Γβ 𝐴𝐴1
2𝛽𝛽−1𝛽𝛽𝑛𝑛 β2

β1
dβ ℎ−1(T)

−2𝑚𝑚 + 𝛽𝛽, 2√𝑎𝑎1√𝐴𝐴2

−2(𝑛𝑛 − 𝑚𝑚) + 𝛽𝛽, 2√𝑎𝑎2√𝐴𝐴3 + 𝑞𝑞1

Minimizing expected loss function 𝐸𝐸𝛽𝛽[𝐿𝐿4 (𝛽𝛽, d)] and using posterior distribution (21), we get the 

Bayes estimates of 𝛽𝛽, using Linex Loss Function as, 

β∗
L = − 1

𝑞𝑞1
ln[𝐸𝐸(𝑒𝑒−𝑝𝑝1𝑞𝑞1)]  

       = − 1
𝑞𝑞1

ln[∫ 𝑔𝑔1(β|X). 𝑒𝑒−β𝑞𝑞1 dββ2
β1

]  

       = − 1
𝑞𝑞1

ln[𝐾𝐾1 ∑ ∫ 𝑎𝑎1
𝛽𝛽

Γβ
𝑎𝑎2

𝛽𝛽

Γβ
𝐴𝐴1

2𝛽𝛽−1𝛽𝛽𝑛𝑛  𝑒𝑒−β𝑞𝑞1β2
β1

dβ ℎ−1(T)  𝑛𝑛−1
𝑚𝑚=1 ]          (30)  
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The Bayes estimate 𝑚𝑚𝐸𝐸
∗  of  ′m′ using General Entropy Loss Function is explained below. It was 

proposed by Calabria and Pulcini in 1994. 

Minimizing the expectation [𝐸𝐸𝑚𝑚 [𝐿𝐿5 (m, d)] and using posterior distribution, we get the Bayes 

estimate ‘m’ by means of the nearest integer value say 𝑚𝑚𝐸𝐸
∗  , using General Entropy Loss Function 

as under: 

𝑚𝑚𝐸𝐸
∗ = [𝐸𝐸(m−𝑞𝑞3)]− 1

𝑞𝑞3   

= [∑ m−𝑞𝑞3𝐼𝐼3(m)𝑛𝑛−1
𝑚𝑚=1

∑ 𝐼𝐼3(m)𝑛𝑛−1
𝑚𝑚=1

]
− 1

𝑞𝑞3          (31) 

where  𝐼𝐼3(m)  is same as in (23). 

Further, minimizing the expectation [𝐸𝐸𝜃𝜃1   [𝐿𝐿5 (𝜃𝜃1,d)] and using posterior distribution (19), we get 

Bayes estimate of 𝜃𝜃1  using General Entropy Loss Function as, 

𝜃𝜃1𝐸𝐸
∗ = [𝐸𝐸(𝜃𝜃1

−𝑞𝑞3)]− 1
𝑞𝑞3  

      =  [𝐾𝐾1 ∑ ∫ [𝜃𝜃1
2𝑚𝑚−𝛽𝛽−𝑞𝑞3−1𝑒𝑒−(𝜃𝜃1𝐴𝐴2+𝑎𝑎1 𝜃𝜃1

⁄ )  d𝜃𝜃1

∞

0

𝑛𝑛−1
𝑚𝑚=1    2𝐴𝐴3

−[2(𝑛𝑛−𝑚𝑚)−𝛽𝛽] 2⁄  

            [ 1
𝑎𝑎2

]
−[2(𝑛𝑛−𝑚𝑚)−𝛽𝛽] 2⁄

Bessel K[−2(𝑛𝑛 − 𝑚𝑚) + 𝛽𝛽, 2√𝑎𝑎2√𝐴𝐴3]    

 ∫ 𝑎𝑎1𝛽𝛽

Γβ
𝑎𝑎2𝛽𝛽

Γβ  𝐴𝐴1
2𝛽𝛽−1𝛽𝛽𝑛𝑛 β2

β1
dβ ℎ−1(T) ]− 1

𝑞𝑞3     

       = [𝐾𝐾1 ∑ 2𝐴𝐴2
−[2𝑚𝑚−𝛽𝛽−𝑞𝑞3] 2⁄𝑛𝑛−1

𝑚𝑚=1 [ 1
𝑎𝑎1

]
−[2𝑚𝑚−𝛽𝛽−𝑞𝑞3] 2⁄

  

           Bessel K[−2𝑚𝑚 + 𝛽𝛽 − 𝑞𝑞3, 2√𝑎𝑎1√𝐴𝐴2] 2𝐴𝐴3
−[2(𝑛𝑛−𝑚𝑚)−𝛽𝛽] 2⁄
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           [ 1
𝑎𝑎2

]
−[2(𝑛𝑛−𝑚𝑚)−𝛽𝛽] 2⁄

 Bessel K[−2(𝑛𝑛 − 𝑚𝑚) + 𝛽𝛽, 2√𝑎𝑎2√𝐴𝐴3] 

 ∫ 𝑎𝑎1𝛽𝛽

Γβ
𝑎𝑎2𝛽𝛽

Γβ 𝐴𝐴1
2𝛽𝛽−1𝛽𝛽𝑛𝑛 β2

β1
dβ ℎ−1(T) ]− 1

𝑞𝑞3     (32) 

where Bessel K[−2𝑚𝑚 + 𝛽𝛽 − 𝑞𝑞3, 2√𝑎𝑎1√𝐴𝐴2]  and  

Bessel K[−2(𝑛𝑛 − 𝑚𝑚) + 𝛽𝛽, 2√𝑎𝑎2√𝐴𝐴3]   are  same as in (18). 

Minimizing expectation [𝐸𝐸𝜃𝜃2   [𝐿𝐿5 (𝜃𝜃2  , d)] and using posterior distribution (20), we get Bayes 

estimate of 𝜃𝜃2  using General Entropy Loss Function as: 

𝜃𝜃2𝐸𝐸
∗ = [𝐸𝐸(𝜃𝜃2

−𝑞𝑞3)]− 1
𝑞𝑞3  

= [𝐾𝐾1 ∑ ∫ 𝜃𝜃2
2(𝑛𝑛−𝑚𝑚)−𝛽𝛽−𝑞𝑞3−1𝑒𝑒−(𝜃𝜃2𝐴𝐴3+𝑎𝑎2 𝜃𝜃2

⁄ ) d𝜃𝜃2

∞

0

𝑛𝑛−1
𝑚𝑚=1   

     2𝐴𝐴2
−[2𝑚𝑚−𝛽𝛽] 2⁄       [ 1

𝑎𝑎1
]

−[2𝑚𝑚−𝛽𝛽] 2 ⁄
Bessel K [−2𝑚𝑚 + 𝛽𝛽, 2√𝑎𝑎1√𝐴𝐴2 ]  

     ∫ 𝑎𝑎1𝛽𝛽

Γβ
𝑎𝑎2𝛽𝛽

Γβ 𝐴𝐴1
2𝛽𝛽−1𝛽𝛽𝑛𝑛 𝑒𝑒−β𝑞𝑞1β2

β1
dβ ℎ−1(T) ]− 1

𝑞𝑞3   

  = [ 𝐾𝐾1 ∑ 2𝐴𝐴3
−[2(𝑛𝑛−𝑚𝑚)−𝛽𝛽−𝑞𝑞3] 2⁄𝑛𝑛−1

𝑚𝑚=1  [ 1
𝑎𝑎2

]
−[2(𝑛𝑛−𝑚𝑚)−𝛽𝛽−𝑞𝑞3] 2⁄

 

       Bessel K[−2(𝑛𝑛 − 𝑚𝑚) + 𝛽𝛽 − 𝑞𝑞3, 2√𝑎𝑎2√𝐴𝐴3] 2𝐴𝐴2
−[2𝑚𝑚−𝛽𝛽] 2⁄     

        [ 1
𝑎𝑎1

]
−[2𝑚𝑚−𝛽𝛽] 2⁄

 Bessel K [−2𝑚𝑚 + 𝛽𝛽, 2√𝑎𝑎1√𝐴𝐴2 ]  

       ∫ 𝑎𝑎1𝛽𝛽

Γβ
𝑎𝑎2𝛽𝛽

Γβ 𝐴𝐴1
2𝛽𝛽−1𝛽𝛽𝑛𝑛 𝑒𝑒−β𝑞𝑞1β2

β1
dβ ℎ−1(T) ]− 1

𝑞𝑞3    (33) 

where Bessel K[−2𝑚𝑚 + 𝛽𝛽, 2√𝑎𝑎1√𝐴𝐴2]  and 
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Bessel K[−2(𝑛𝑛 − 𝑚𝑚) + 𝛽𝛽 − 𝑞𝑞3, 2√𝑎𝑎2√𝐴𝐴3]   are  same as in (18). 

Minimizing expectation [𝐸𝐸𝛽𝛽  [𝐿𝐿5 (𝛽𝛽  , d)] and using posterior distributions (21), we get Bayes 

estimate of 𝜃𝜃𝛽𝛽  using General Entropy Loss Function as: 

β∗
E = [𝐸𝐸(β−𝑞𝑞3)]− 1

𝑞𝑞3  

= [𝐾𝐾1 ∑ ∫ 𝑎𝑎1
𝛽𝛽

Γβ
𝑎𝑎2

𝛽𝛽

Γβ
𝐴𝐴1

2𝛽𝛽−1𝛽𝛽𝑛𝑛 β−𝑞𝑞3β2
β1

dβ𝑛𝑛−1
𝑚𝑚=1  ℎ−1(T)  ]− 1

𝑞𝑞3   (34) 

5. NUMERICAL STUDY: 

We have generated 20 random observations from proposed Weighted Weibull Length Biased 

change point model. The first eight observations are with 𝛽𝛽 = 2.5 and 𝜃𝜃1 = 0.005 and next 

twelve are with 𝛽𝛽 = 2.5 and 𝜃𝜃2 = 0.002. Here, we note that 𝜃𝜃1 and 𝜃𝜃2 themselves were random 

observations from inverted gamma distributions with prior means 1 = 0.05, 2 = 0.02 and 

variance 𝜎𝜎1
2 = 0. 000 , 𝜎𝜎2

2=0.0008 resulting in 𝑎𝑎1 = 0.0075 𝑎𝑎𝑛𝑛𝑎𝑎 𝑎𝑎2 = 0.0030.

These observations are given in Table 1. 

Table 1 

Generated observations from proposed change point model 

I 1 2 3 4 5 6 7 8 9 10 

Xi 0.022 0.95 0.111 0.549 0.846 0.666 0.198 0.306 0.055 0.156 

I 11 12 13 14 15 16 17 18 19 20 

Xi 0.291 0.228 0.460 0.396 0.783 0.999 0.001 0.108 0.888 0.963 
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Now, we have calculated the values of posterior mean of m, 1, 2, 𝛽𝛽. We have also calculated the 

posterior median and posterior mode of m. The results are shown below in Table 2. 

Table 2   

 

 

 

 

 

 

 

 

 

We also compute the Bayes estimates 𝑚𝑚𝐿𝐿
∗  , 𝑚𝑚𝐸𝐸

∗  of m, 𝜃𝜃1𝐿𝐿
∗  , 𝜃𝜃1𝐸𝐸

∗  of 𝜃𝜃1, 𝜃𝜃2𝐿𝐿
∗  , 𝜃𝜃2𝐸𝐸

∗  of 𝜃𝜃2 𝛽𝛽𝐿𝐿
∗ , 𝛽𝛽𝐸𝐸

∗  of 𝛽𝛽, 

Using the results given in section 4 for the data given in table 3 and for different values of shape 

parameter 𝒒𝒒𝟏𝟏 and 𝒒𝒒𝟑𝟑 ,the results are shown in Tables 3 and Table 4. 

 

Prior 

Density 

Bayes estimates of 

change point 

 Bayes estimates 

of 

Posterior means 

of parameters1 

and 2 

Bayes 

estimates of 

Posterior 

means of 

parameters 

𝛽𝛽 

Posterior 

Median 

Posterior 

Mean 

Posterior 

mode 

1 2 𝛽𝛽 

Inverted 

Gamma prior 

8.13 8.33 8.13 0.05 0.02 2.5 

 

TABLE 3 Bayes estimates using Linex Loss Function 

Prior 

Density 

𝑞𝑞1 𝑚𝑚𝐿𝐿
∗  1𝐿𝐿

∗  2𝐿𝐿
∗

 𝛽𝛽𝐿𝐿∗ 

Inverted 

Gamma 

prior 

0.09 8 0.05 0.023 2.5 

0.10 8 0.05 0.022 2.5 

0.20 8 0.05 0.021 2.4 

1.2 7 0.03 0.018 2.2 

1.5 6 0.02 0.014 2.1 

-1.0 9 0.09 0.027 2.6 

-2.0 10 0.010 0.029 2.7 

TABLE 4 Bayes estimates using General Entropy Loss Function 

Prior 

Density 

𝑞𝑞3 𝑚𝑚𝐸𝐸
∗  1𝐸𝐸

∗  2𝐸𝐸
∗

 𝛽𝛽𝐸𝐸∗  

Inverted 

Gamma 

prior 

0.09 8 0.05 0.023 2.5 

0.10 8 0.05 0.021 2.4 

0.20 8 0.05 0.020 2.3 

1.2 6 0.03 0.017 2.2 

1.5 5 0.02 0.015 2.0 

-1.0 9 0.09 0.025 2.6 

-2.0 10 0.10 0.028 2.8 
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TABLE 3 Bayes estimates using Linex Loss Function 

Prior 

Density 

𝑞𝑞1 𝑚𝑚𝐿𝐿
∗  1𝐿𝐿

∗  2𝐿𝐿
∗

 𝛽𝛽𝐿𝐿∗ 

Inverted 

Gamma 

prior 

0.09 8 0.05 0.023 2.5 

0.10 8 0.05 0.022 2.5 

0.20 8 0.05 0.021 2.4 

1.2 7 0.03 0.018 2.2 

1.5 6 0.02 0.014 2.1 

-1.0 9 0.09 0.027 2.6 

-2.0 10 0.010 0.029 2.7 

TABLE 4 Bayes estimates using General Entropy Loss Function 

Prior 

Density 

𝑞𝑞3 𝑚𝑚𝐸𝐸
∗  1𝐸𝐸

∗  2𝐸𝐸
∗

 𝛽𝛽𝐸𝐸∗  

Inverted 

Gamma 

prior 

0.09 8 0.05 0.023 2.5 

0.10 8 0.05 0.021 2.4 

0.20 8 0.05 0.020 2.3 

1.2 6 0.03 0.017 2.2 

1.5 5 0.02 0.015 2.0 

-1.0 9 0.09 0.025 2.6 

-2.0 10 0.10 0.028 2.8 

 Above table shows that for small values such as 𝑞𝑞1= 0.09, 0.10, 0.20, Linex Loss Function is 

almost symmetric and nearly quadratic and the values of the Bayes Estimates under such a loss is 

not far from the posterior mean. Table 3 also shows that for 𝑞𝑞1= 1.2, 1.5, Bayes Estimates are less 

than actual value of m=8. 

                 For 𝑞𝑞1= 𝑞𝑞3= -1,-2, we can clearly see that the Bayes estimates are quite large than actual 

value m=8. It can be seen from the Table 3 and Table 4 that the negative sign of shape parameter 

of loss functions reflects under estimation is more serious than that over the estimation. Thus, 

problem of under estimation can be solved by taking the value of shape parameters of Linex and 

General Entropy Loss Functions as negative. 

Table 4 shows that for small values of |𝑞𝑞3| , 𝑞𝑞3= 0.09, 0.10, 0.20, the values of the Bayes 

estimate obtained using General Entropy Loss Functions are not far from the posterior mean. Table 

4 also shows that for 𝑞𝑞3= 1.2, 1.5, Bayes estimates are less than actual value of m=8. 

Here, it is clearly seen from the Table 3 and Table 4 that positive sign of shape parameter 

of loss functions reflects over estimation is more serious than under estimation. Thus, problem of 

over estimation can be solved by taking the value of shape parameter of Linex and General Entropy 

Loss Functions as positive and high. 

6. SENSITIVITY OF BAYES ESTIMATES 

In this section, we have studied the sensitivity of the Bayes estimates obtained with 

respect to change in the prior of the parameter. The mean values 𝜇𝜇1 and  𝜇𝜇2 and 

variances𝜎𝜎1
2 and 𝜎𝜎2

2 have been used as prior information in computing the parameters 

of the prior. Results are shown in Table 5. 
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Above table shows that for small values such as 𝑞𝑞1= 0.09, 0.10, 0.20, Linex Loss Function is 

almost symmetric and nearly quadratic and the values of the Bayes Estimates under such a loss is 

not far from the posterior mean. Table 3 also shows that for 𝑞𝑞1= 1.2, 1.5, Bayes Estimates are less 

than actual value of m=8. 

                 For 𝑞𝑞1= 𝑞𝑞3= -1,-2, we can clearly see that the Bayes estimates are quite large than actual 

value m=8. It can be seen from the Table 3 and Table 4 that the negative sign of shape parameter 

of loss functions reflects under estimation is more serious than that over the estimation. Thus, 

problem of under estimation can be solved by taking the value of shape parameters of Linex and 

General Entropy Loss Functions as negative. 

Table 4 shows that for small values of |𝑞𝑞3| , 𝑞𝑞3= 0.09, 0.10, 0.20, the values of the Bayes 

estimate obtained using General Entropy Loss Functions are not far from the posterior mean. Table 

4 also shows that for 𝑞𝑞3= 1.2, 1.5, Bayes estimates are less than actual value of m=8. 

Here, it is clearly seen from the Table 3 and Table 4 that positive sign of shape parameter 

of loss functions reflects over estimation is more serious than under estimation. Thus, problem of 

over estimation can be solved by taking the value of shape parameter of Linex and General Entropy 

Loss Functions as positive and high. 

6. SENSITIVITY OF BAYES ESTIMATES 

In this section, we have studied the sensitivity of the Bayes estimates obtained with 

respect to change in the prior of the parameter. The mean values 𝜇𝜇1 and  𝜇𝜇2 and 

variances𝜎𝜎1
2 and 𝜎𝜎2

2 have been used as prior information in computing the parameters 

of the prior. Results are shown in Table 5. 

 
                                 Table 5  

      Posterior mean m* for the data given in Table 2 

μ1 μ2 m* m*E 

0.005 

0.005 

0.005 

0.005 

0.006 

0.008 

8 

8 

8 

8 

8 

8 

0.007 

0.002 

0.4 

0.002 

0.002 

0.002 

8 

8 

8 

8 

8 

8 

0.002 

0.003 

0.004 

0.004 

0.005 

0.006 

8 

8 

8 

8 

8 

8 

 

Table 5 leads to the conclusion that m* and m*E are robust with respect to the correct choice of the 

prior density of 𝜃𝜃  (𝜃𝜃2) and a wrong choice of the prior density of 𝜃𝜃1 (𝜃𝜃 ) Moreover, they are also 

robust with respect to the change in the shape parameter of General Entropy Loss Function. 

7. CONCLUSIONS: 

The results in all the tables lead to the conclusion that performance of posterior means has 

better performance than that of 𝑚𝑚𝐿𝐿
∗ and 𝑚𝑚𝐸𝐸

∗of change point. 60% values of posterior mean 
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are closed to actual value of change point with correct choice of prior. 64% values of posterior 

median are closed to actual value of change point with correct choice of prior. 63% values of 

posterior mode   are closed to actual value of change point with correct choice of prior. 67% 

values of m*L are closed to actual value of change point with correct choice of prior. 68% 

values of m*E are closed to actual value of change point with correct choice of prior. 
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