
IF : 3.62 | IC Value 70.36

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS  X 471 

       Volume-5, Issue-11, November - 2016 • ISSN No 2277 - 8160

Original Research Paper Commerce Education

Item-Total Correlation as the Cause for the Underestimation 
of the Alpha Estimate for the Reliability of the Scale 

Jari 
Metsämuuronen

University of Helsinki, Finland Finnish Education Evaluation Centre, 
Finlan

By modifying the basic formulae of the alpha coefficient for estimating the scale reliability, a simple coefficient is 
derived where the item-total correlation is seen. While knowing that the alpha coefficient gives the lower bound for 
the reliability except the case of (essential) tau-equivalency, the reason for the underestimation is in the process of 

calculating the item-total correlation. The article shows why and how much the item-total correlation underestimates the item discrimination in 
the deterministically discriminating dataset; even in the optimally constructed dataset, the underestimation may be 13%.  
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1. Introduction   
During the recent years, the discussions about different aspects of the test score or scale reliability 
have been active (e.g. Graham, 2006; Raykov & Marcoulides, 2016; 2015; 2013; 2012; Raykov & 
Traynor, 2016; Raykov, West, & Traynor, 2015). Specifically, the researchers have been productive 
around the concept of maximal reliability within the SEM analysis (see Tenko Raykov’s and his 
colleagues works in https://msu.edu/~raykov/Raykov_short_vitae.pdf). The findings related with the 
reliability of factor scores have been done independently also within the traditional exploratory factor 
analysis (EFA) (e.g. Tarkkonen, 1987; Vehkalahti, 1995; 2000) but the connection to SEM analysis 
have gained greater popularity.  

From the 1937 on (Kuder & Richardson, 1937; Gulliksen, 1950; Cronbach, 1951), the 
classical alpha estimator (α) for the reliability have gained popularity.  According to Hogan, 
Benjamin, and Brezinski (2000), Graham (2006), and Yang and Green (2011), the alpha estimate is 
the most used estimate for reliability for the unweighted scores. It is known that alpha is equal to 
reliability in conditions of (essential) tau-equivalence, that is, unless the true scores (taus) in the scale 
components are (essentially) equivalent, the alpha estimate for the scale reliability underestimates the 
composite reliability coefficient (see Guttman, 1945; Gulliksen, 1950; Kristoff, 1974; Novick & 
Lewis, 1967; Lord & Novick, 1968, 87–90; ten Berge & Zegers, 1978; Raykov, 1997; Vehkalahti, 
2000; Raykov, Dimitrov, & Asparouhov, 2010; Metsämuuronen, 2017; 176–177) and the 
underestimation may be substantial (Raykov, 1997).  This has led to the discussion about the greatest 
lower bound to reliability (e.g. Jackson & Agunwamba, 1977; Callender & Osburn, 1979; 

ten Berge & Sočan, 2004) as well as maximal reliability.  Graham (2006) 
and Raykov (1997) showed that the larger the violation of tau-equivalence in the test, the more alpha 
coefficient underestimates score reliability. Raykov (1997) showed also that the underestimation is 
less vulnerable with the test with a greater number of items.  

This article elaborates the underestimation characteristics of the alpha estimator. A 
specific focus is the connection of alpha coefficient to the item discrimination, and more specifically, 
to the item-total correlation. The algebraic connection of the item-total correlation and alpha estimator 
is known from Lord and Novick (1968, 331, see formula 1). This leads to an obvious conclusion 
connected to the underestimation in test score reliability: the reasons and magnitude for the 
underestimation of the reliability by using the alpha estimate have to do something with the item-total 
correlation. Though the treaty is not restricted to the dichotomous case, focusing on the point-biserial 
correlation in the dichotomous dataset makes the discussion easier to adopt. This article shows that 
the point-biserial correlation always underestimates the item discrimination even in the 
deterministically discriminating, Guttman-type of dataset. Only when all the items of the 
dichotomous dataset are equally difficult, that is, in the (essentially) tau-equivalent case, 1gX  . In 
all other cases, the product-moment correlation coefficient underestimates the item discrimination 
and, consequently, the alpha estimate underestimates the reliability even though the dataset would 
discriminate the test scores and cases from each other perfectly.  
  

2. Item discrimination in the classical estimators of reliability 
Recall the Lord and Novick (1968, p. 331) formula for alpha reliability: 
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where k refers to the number of items,  2
g  refers to the variances of single items g, 2

X refers to the 
variance in the score, and gX refers to the item-total correlation between item g and the score X. The 
coefficient is algebraically identical with the original formula (Gulliksen, 1950), but the item 
discrimination gX is seen in the formula.  The formula is not restricted to dichotomous cases.  Recall 
also Ebel’s (1967) formula, based on Stanley (1964): 
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where DI refers to Kelley’s (1939) Discrimination Index, another estimator for the item 
discrimination. Ebel’s coefficient is not in the general use though.  
 

While knowing from (1) that gX is the element needed for estimating the test score reliability 
and when knowing that the alpha estimate always underestimates the reliability, the reason for the 
underestimation has to do something with the gX . It will be seen that, even with the deterministically 
discriminating Guttman type of items, gX always underestimates the item discrimination except the 
(essentially) tau-equivalent situation of strictly equal item difficulties in the dichotomous dataset. 
Though the treaty in what follows is not restricted to the achievement testing with 0/1 items, such 
wordings of “test-takers”, “wrong answer”, and “correct answer” are used to keep the discussion more 
practical.   

 
  

3. Underestimation of reliability caused by the underestimation in 
point-biserial correlation in the dichotomous dataset 

 
In the dichotomous dataset, the point-biserial correlation can be expressed as follows: 
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where M+ refers to the average score of the test-takers giving the correct answer (scoring 1) – let’s 
call this group as upper group – and M– refers to the average score in the group giving the incorrect 
answer (scoring 0) let’s call this group the lower group – and g refers to the standard deviation of 
the item g, and X  refers to the standard deviation of the score X. 

Let us denote the number of the cases in the upper and lower groups by (non-
symmetrically) N+ and N–. Obviously, the total number of all cases (N) is the sum of both groups: 
 
N = N++ N–       (4) 
 
Because all the 1s are in the upper group 
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and, because of (4) and (5), 
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By denoting is the grand mean in the total score with GM, the variance of the test score can be 
manipulated as follows: 
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.  
The term (M+ – M–)σg  is manipulated as follows 
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Hence, the item total correlation can be expressed in the form 
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To show some practical notes of the underestimation of point-biserial correlation in relation with the 
underestimation of reliability, two theoretical, deterministically discriminating datasets are used (see 
Tables 1 and 2). Both datasets consists of 11 items and 12 cases. Because of the ultimate 
discrimination, the estimates of the reliability should give the value 1. However, this will not happen 
if the items are not (essentially) tau-equivalent as discussed above.  
 

3.1 Coefficient alpha in the (essentially) tau-equivalent situation 
 
The point-biserial correlation (9) can reach the value 1gX   only with one condition: when the 
variances of the score in both upper and lower group are equally 2

X  = 2
X  = 0 as in Table 1.  
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 Table 1. Deterministically discriminating dataset with equal item difficulties  

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 score 
 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 
 1 1 1 1 1 1 1 1 1 1 1 11 
 1 1 1 1 1 1 1 1 1 1 1 11 
 1 1 1 1 1 1 1 1 1 1 1 11 
 1 1 1 1 1 1 1 1 1 1 1 11 
 p  0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33  
 1-p  0,67 0,67 0,67 0,67 0,67 0,67 0,67 0,67 0,67 0,67 0,67  
 p(1-p)  0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22  
 σgX = sqrt(p(1-p))  0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47  
 ρgx  1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00  
 σgX x ρgx  0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47  
 DI33%  1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00  

 
The equal (observed) item difficulties do not necessarily mean that the true scores would be equal. 
Let us assume that the true scores are equal in Table 1. The assumption of tau-equivalency in relation 
with the alpha estimator comes from the original derivation of the alpha coefficient (Kuder & 
Richardson, 1937) based on generalizing the idea of parallel tests from the classical Spearman-Brown 
prophecy formula (Spearman, 1910; Brown, 1910) to the situation that all the individual items are 
parallel “tests”. The parallelism implies that the true scores of the parallel tests correlate perfectly: 

, 1
g h   . It also means that the observed scores of the parallel tests correlate perfectly 1gh   

(Gulliksen, 1950, 13–14; see also Metsämuuronen, 2017, proof 1). In the dichotomous dataset, the 
latter leads to the assumption of the equal item difficulties as well as the equal variances of the items.  

The dataset in Table 1 shows (one of the possible) tau-equivalent case just as an 
example. The dataset fulfills the technical requirement of parallelism of the items: 1gh  , g h  , 

and 2 2
g h  . In this data structure, also the item total correlations are identically 1gX  . The dataset 

is formed so that also the DI = 1. 
In practical terms, the pattern of equal difficulty levels means that, in both the upper 

and lower group, there is only one value in the score: 0 in the lower group and k in the upper group. 
Then, because of ultimate symmetricity in the scores, 
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In the case of essential tau-equivalence, the deterministically discriminating dataset produces the 
value α = 1 by the alpha coefficient (1) because 1gX   and equal item variances. The Ebel formula 
(2) gives the value of 0.97, which is obviously an underestimation taking into account that the item 
discrimination measured by DI equals 1. In the practical settings, then, the perfect value for the alpha 
estimate would refer to the specific situation where the test takers can be deterministically divided in 
the two groups of zeros and maximum score. However, this data structure is an ultimately theoretical 
one – it is a very demanding task to find a large number of parallel items for a test (Raykov, Dimitrov, 
& Asparouhov, 2010). Regardless the theoretical essence of the data in Table 1, the structure of the 
dataset may be seen as the latent structure for the assessment tests based on standards. When our 
intention is to construct a test to assess a certain level of proficiency we may expect the test items to 
be relevant for this level. Hence, we may be willing to select test items which are more or less tau-
equivalent. 

3.2 Coefficient alpha in the non-tau-equivalent situation 
The other theoretical dataset (Table 2) is also a deterministically discriminating one. However, it is a 
Guttman type of dataset (Guttman, 1950, Linacre & Wright, 1996), that is, items are patterned with 
a string of 0s followed by a string of 1s when the respondents are ranked in an ascending order by the 
score and the dataset forms an incremental structure of the difficulty levels.  
Table 2. Deterministically discriminating dataset with non-equal variances 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 sum 
 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 1 1 
 0 0 0 0 0 0 0 0 0 1 1 2 
 0 0 0 0 0 0 0 0 1 1 1 3 
 0 0 0 0 0 0 0 1 1 1 1 4 
 0 0 0 0 0 0 1 1 1 1 1 5 
 0 0 0 0 0 1 1 1 1 1 1 6 
 0 0 0 0 1 1 1 1 1 1 1 7 
 0 0 0 1 1 1 1 1 1 1 1 8 
 0 0 1 1 1 1 1 1 1 1 1 9 
 0 1 1 1 1 1 1 1 1 1 1 10 
 1 1 1 1 1 1 1 1 1 1 1 11 

p  0,08  0,17  0,25  0,33  0,42  0,50  0,58  0,67  0,75  0,83  0,92   
1-p  0,92 0,83 0,75 0,67 0,58 0,50 0,42 0,33 0,25 0,17 0,08  

p(1-p)  0,08 0,14 0,19 0,22 0,24 0,25 0,24 0,22 0,19 0,14 0,08  
σgX = sqrt(p(1-p))  0,28 0,37 0,43 0,47 0,49 0,50 0,49 0,47 0,43 0,37 0,28  

ρgx  0,48  0,65  0,75  0,82  0,86  0,87  0,86  0,82  0,75  0,65  0,48   
σgX x ρgX  0,13  0,24  0,33  0,39  0,42  0,43  0,42  0,39  0,33  0,24  0,13   

DI33%  0,33  0,67  1,00  1,00  1,00  1,00  1,00  1,00  1,00  0,67  0,33   
varM+  10,00  8,25  6,67  5,25  4,00  2,92  2,00  1,25  0,67  0,25  0,00   
varM-  0,00  0,25  0,67  1,25  2,00  2,92  4,00  5,25  6,67  8,25  10,00   

σ2gX (1-meanρgh)  0,04  0,07  0,10  0,11  0,13  0,13  0,13  0,11  0,10  0,07  0,04   
 
Though the data structure in Table 2 produces, as Table 1, a score which ultimately discriminates the 
cases from each other, the structure leads to an underestimation of the reliability though the values 
are high because of an obviously unequal item difficulties, item variances and consequently, the 
unequal inter-item correlations. The standard formula of KR20 in (1) produces the value of 0.92.  

Let us think about the highlighted item in the middle (v6). This is an item with p = 0.50 and 
the perfect discrimination in a sense that the item can deterministically discriminate the cases who 
gave the correct answer from those who gave the incorrect one while also the score can discriminate 
all the cases from each other. In this item, the point-biserial correlation is the highest ( gX  = 0.87). 
Why the value is not perfectly 1? Obviously, because of the mathematical procedure in calculating 
the correlation.  



GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS  X 476 

Volume-5, Issue-11, November - 2016 • ISSN No 2277 - 8160          IF : 3.62 | IC Value 70.36

6 
 

Let us elaborate the item v6. The symmetrically incremental structure of the data determines 
three things. First, the number of cases in both upper (+) and lower group (-) are the same (N+ = N- 
=N/2). Second, the variances of the score in both parts are identical: 
 

2 2
X X          (13) 

 
Third, since there are only two means and the number of cases in the halves is the same, the means 
of the scores in the lower half (M –), the upper half (M +) and the grand mean (GM) of the reduced 
data are connected. Namely, because of (11) and knowing that p = 0.50: 
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and, because of (11)  
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Because p = 0.50 in the item and because of (9), (14) and (15), the item-total correlation is: 
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Formula (16) shows, in a simple way, the same as noted above: the value of ρgX cannot reach the 
perfect 1 unless the variance in the sub-groups + or – is equally 2

X  = 2
X  = 0. Formula (16) also 

means that the higher is the variance in the upper or lower group, the more drastic is the 
underestimation of item discrimination even in the deterministically discriminating dataset. In the 
case, the underestimation is (1 – 0.87 = 0.13), that is, 13 percent – the value would be the same with 
bigger datasets also if the structure stayed the same.  

Though the dataset in Table 2 is a theoretical one, it is a kind of ultimate structure seen 
behind many achievement tests with the incremental difficulty level; usually the test items in the static 
achievement testing are selected so that the test starts with easy items and ends with the demanding 
ones. As seen, in these kinds of situations, the underestimation of the reliability may be substantial as 
noted by Raykov (1997); at the best, it is 13% of the maximum. The reason for the underestimation 
of the reliability lies in the underestimation in item discrimination – caused by the mathematical 
procedure in calculating the correlation coefficient.  

  
 

4. Discussion 
The article shows that the reason for the underestimation in reliability is bound to underestimation in 
item-total correlation. Point-biserial correlation underestimates the item discrimination except in the 
(essentially) tau-equivalent situation. Even in the deterministically discriminating dataset, the 
correlation cannot reach the value 1 if there was variance in the sub-scores of those who reached 1 
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and those who reached 0. Point-biserial correlation is also very unstable indicator of item 
discrimination which also affect the underestimation in reliability. 

Usually we tend to think that the error in testing comes from the random error and 
systematic error. The results revealed a kind of source of a systematic error in alpha estimator caused 
by the computing procedure of correlation coefficient. In many practical testing settings the alpha 
estimate may be valid as giving the lower bound of the reliability. However, because of knowing the 
reason for and amount of the underestimation, it may be possible to create a correction factor which 
takes into account the technical challenges in point-biserial correlation.  Would it be possible utilize 
this knowledge in the latent trait modeling?  Maybe it could be possible to correct the estimate of the 
item-total correlation? It may be worth noting that Metsämuuronen (2017, proof 7) showed that the 
item-rest-correlation (Henrysson, 1963) underestimates the item-discrimination even more than the 
item-total correlation in the specific situation of deterministically discriminating dataset with the 
incremental structure. Hence, this is not the way to go. 

Another option is to start to think about the item discrimination from a different perspective: 
Why the item discrimination should be based on the actual values of the test score in the first place? 
Would it be possible to use only the order of the cases as the DI is using – but using the whole dataset 
in the calculations? This path may lead us to another kind of estimators for the item discrimination 
and reliability.  

 
.  
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