

Lakhan Singh
Sunder Pal Singh

Original Research Paper
Mathematics
ON THE SIMPLE GROUP GENERATED BY STRUCTURE
EQUATION $F^{5}+F^{4}+F^{3}+F^{2}+F=0$
Department of Mathematics, D.J. College, Baraut, Baghpat (U.P.)
Department of Physics, D.J. College, Baraut, Baghpat (U.P.)

ABSTRACT

KEYWORDS : Differnetiable manifold, projection operators, linear congruence, group and its normal sub groups, simple group, Kernel, tangent and normal vectors

1. INTRODUCTION:

Let M^{n} be a differentiable manifold of class C^{∞} and F be a $(1,1)$ tensor of class C^{∞} defined on M^{n}, satisfying

$$
\begin{equation*}
F^{5}+F^{4}+F^{3}+F^{2}+F=0 \tag{1.1}
\end{equation*}
$$

we define the operators l and m on M^{n} by
(1.2) $\quad l=F^{5}, \quad m=I-F^{5}$
where I denotes the identity operator.

Theorem (1.1): Let $F, 1$ and m satisfy $(1,1)$ and (1.2) then
(1.3) (i) $\quad F^{s}=F^{r}$ where $s \equiv r(\bmod 5), r, s \geq 1$

$$
\begin{align*}
& l+m=I, \quad l^{2}=l, m^{2}=m, \quad l m=m l=0 \tag{ii}\\
& F l=l F=F, \quad F m=m F=0
\end{align*}
$$

Proof (i): from (1.1), we get

$$
\begin{equation*}
F^{5}=-F^{4}-F^{3}-F^{2}-F \tag{1.4}
\end{equation*}
$$

$\Rightarrow F^{6}=-F^{5}-F^{4}-F^{3}-F^{2}$

$$
\begin{aligned}
& \Rightarrow F^{6}=F^{4}+F^{3}+F^{2}+F-F^{4}-F^{3}-F^{2} \\
& \Rightarrow F^{6}=F \\
& \Rightarrow F^{7}=F^{2}, F^{8}=F^{3}, F^{9}=F^{4}, F^{10}=F^{5}, F^{11}=F^{6}=F \\
& \Rightarrow F^{s}=F^{r} \text { where } s \equiv r(\bmod 5)
\end{aligned}
$$

(ii) From (1.2) and (1.3) (i), we get the required results.

Theorem (1.2): Let F and m satisfy (1.1) and (1.2) then the set
(1.5) $M_{5}=\left\{m+F, m+F^{2}, m+F^{3}, m+F^{4}, m+F^{5}\right\}$
is a cyclic and simple group, under multiplicatrion of operators.

Proof: Using (1.3) We have the Cayley table for M_{5}

	$m+F$	$m+F^{2}$	$m+F^{3}$	$m+F^{4}$	$m+F^{5}$
$m+F$	$m+F^{2}$	$m+F^{3}$	$m+F^{4}$	$m+F^{5}$	$m+F$
$m+F^{2}$	$m+F^{3}$	$m+F^{4}$	$m+F^{5}$	$m+F$	$m+F^{2}$
$m+F^{3}$	$m+F^{4}$	$m+F^{5}$	$m+F$	$m+F^{2}$	$m+F^{3}$
$m+F^{4}$	$m+F^{5}$	$m+F$	$m+F^{2}$	$m+F^{3}$	$m+F^{4}$

$m+F^{5}$	$m+F$	$m+F^{2}$	$m+F^{3}$	$m+F^{4}$	$m+F^{5}$

From the table it is clear that
a) Closure property: The product of any two elements of M_{5} is again in $M_{5} \therefore M_{5}$ is closed under multiplication.
b) Associative property: Since the multiplication of operators is always associative \therefore it hold for elements of M_{5} also.
c) Existence of Identity: From the Table (1.6), it is clear that $m+F^{5}$ works as an identity element of M_{5}. from (1.2) it is also clear that

$$
m+F^{5}=I .
$$

d) Existence of inverse: From the table (1.6), we have
(1.7) $(m+F)^{-1}=m+F^{4} \Rightarrow\left(m+F^{4}\right)^{-1}=m+F$

$$
\begin{aligned}
& \left(m+F^{2}\right)^{-1}=m+F^{3} \Rightarrow\left(m+F^{3}\right)^{-1}=m+F^{2} \\
& \left(m+F^{5}\right)^{-1}=m+F^{5}=I
\end{aligned}
$$

Thus each element of M_{5} has its multiplicative inverse in M_{5}.

In all M_{5} is a group. Moreover
(1.8) $0\left(M_{5}\right)=5$ (a prime number).

Therefore, $\quad M_{5} \quad$ is cyclic, $\quad M_{5}=\langle m+F\rangle=\left\langle m+F^{2}\right\rangle=$ $\left\langle m+F^{3}\right\rangle=\left\langle m+F^{4}\right\rangle$. Also M_{5} has no proper normal subgroup therefore, M_{5} is simple.

Theorem (1.2): Let (1,1) tensors $p, q \in M_{5}$ where
(1.9) $p=m+F, q=m+F^{3}$, then
(1.10) $p^{3}=q, q^{2}=p, p^{5}=I=q^{5}=p^{2} q=q^{3} p$.

Proof: From (1.2), (1.3) and (1.9), we get (1.10).

Theorem (1.3): Let (1,1) tensors $\alpha, \beta \in M_{5}$, where
(1.11) $\alpha=m+F^{2}, \quad \beta=m+F^{4}$, then
(1.12) $\alpha^{2}=\beta, \beta^{3}=\alpha, \alpha \beta^{2}=I=\alpha^{3} \beta$

Proof: From (1.2), (1.3), and (1.11), we get (1.12)

2. METRIC F-STRUCTURE:

Let g be the Riemannian metric satisfying
(2.1) $\quad \mathcal{F}(X, Y)=g(F X, Y)$ is symmetric,
then
(2.2) $\quad g(F X, Y)=g(X, F Y)$
and $\{F, g\}$ is call ed a metric F-structure.

Theorem (2.1): Let F satisfies (1.1) then
(2.3) $g\left(F^{5} X, F^{5} Y\right)=g(X, Y)-{ }^{-} m(X, Y)$, where,
(2.4) $\quad m(X, Y)=g(m X, Y)=g(X, m Y)$

Proof: Using (1.2), (1.3) (2.2), (2.4), we have
(2.5) $g\left(F^{5} X, F^{5} Y\right)=g\left(X, F^{10} Y\right)$

$$
=g\left(X, F^{5} Y\right)
$$

$$
\begin{aligned}
& =g(X, l Y) \\
& =g(X,(I-m) Y) \\
& =g(X, Y)-g(X, m Y) \\
& =g(X, Y)-m(X, Y)
\end{aligned}
$$

3. KERNEL, TANGENT AND NORMAL VECTORS: We define
(3.1) $\operatorname{Ker} F=\{X: F X=0\}$
(3.2) $\operatorname{Tan} F=\{X: F X \| X\}=\{X: F X=\lambda X\}$
(3.3) $\operatorname{Nor} F=\{X: g(X, F Y)=0, \forall Y\}$

Theorem (3.1): Let F satisfies (1.1), then
(3.4) $\operatorname{Ker} F=\operatorname{Ker} F^{2}=\ldots=\operatorname{Ker} F^{5}$
(3.5) $\operatorname{Tan} F=\operatorname{Tan} F^{2}=\ldots=\operatorname{Tan} F^{5}$
(3.6) $\operatorname{Nor} F=\operatorname{Nor} F^{2}=\ldots=\operatorname{Nor} F^{5}$

REFERENCES

1. A Bejancu:On semi-invariant submanifolds of an almost contact metric manifold. An Stiint Univ., "A.II. Cuza" Lasi Sec. la Mat. (Supplement) 1981, 17-21.
2. B. Prasad :Semi-invariant submanifolds of a Lorentzian Para-sasakian manifold, Bull Malaysian Math. Soc. (Second Series) 21 (1988), 21-26.
3. F. Careres:Linear invairant of Riemannian product manifold, Math Proc. Cambridge Phil. Soc. 91 (1982), 99-106.
4. Endo Hiroshi:On invariant submanifolds of connect metric manifolds, Indian J. Pure Appl. Math 22 (6) (June-1991), 449-453
5. H.B. Pandey \& A. Kumar: Anti-invariant submanifold of almost para contact manifold. Prog. of Maths Volume 21(1): 1987.
6. K. Yano:On a structure defined by a tensor field f of the type $(1,1)$ satisfying $f 3+f=0$. Tensor N.S., 14 (1963), 99-109.
7. R. Nivas \& S. Yadav:On CR-structures and - HSU - structure satisfying , Acta Ciencia Indica, Vol. XXXVII M, No. 4, 645 (2012).
8. Abhisek Singh,: On horizontal and complete lifts Ramesh Kumar Pandey of $(1,1)$ tensor fields F satisfying \& Sachin Khare the structure equation $\mathrm{F}=0$. International Journal of Mathematics and soft computing. Vol. 6, No. 1 (2016), 143-152, ISSN 2249-3328
