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1.  INTRODUCTION 

The Gamma distribution plays an important role in many areas of the Statistics including areas of Life 
testing and Reliability. It is used to make realistic adjustment to exponential distribution in life testing 
situations. The fact that a sum of independent exponentially distributed random variables has a Gamma 
distribution, leads to the appearance of Gamma distribution in the theory of random counters and other 
topics associated with precipitation process. The Gamma distribution is a flexible distribution that 
commonly offers a good fit to any variable such as in Environmental, Meterology, Climatology and other 
physical situations. The Gamma distribution has also been used to model the size of insurance claims and 
rainfalls. This means that aggregate insurance claims and the amount of rainfall accumulated in a reservoir 
are modelled by a gamma distribution.  

  Suppose that X is a random variable drawn from Gamma distribution with the probability density function 

f(x, λ) =  𝑒𝑒
−𝑥𝑥
  λ     𝑥𝑥𝛼𝛼−1

Г𝛼𝛼    𝜆𝜆𝛼𝛼    ; x > 0, λ > 0 ,α > 0;                                                                               (1.1) 

where α is the shape parameter which is known and λ is the scale parameter which is unknown. 

For a Bayesian analysis, loss function plays an important role and symmetric and asymmetric loss functions 
are used by most researchers. These loss functions are unbounded and widely employed in decision theory 
due to its elegant mathematical properties, not its applicability to the representation of a true loss structure 
(Leon and Wu, 1992). Various examples illustrate that in many situations, unbounded loss can be unduly 
restrictive and suggest that instead we should consider the properties of estimators based on a Bounded loss 
function. A bounded loss function avoids the potential explosion of the expected loss. Moreover, the nature 
of many decision problems and practical arguments require the use of Bounded loss functions, especially in 
Financial problems. For more details see Berger (1985). To overcome the shortcoming of unbounded loss, 
several bounded loss functions are proposed by many authors, for example, Spring (1993) proposed a 
bounded loss function named reflected normal loss function which is appropriate for estimation of location 
parameter and Towhidi and Behboodian (1999) proposed reflected gamma loss function which is 
appropriate for estimation of scale parameter  and is given by  

L ( λ̂, λ) = k{1 − exp [−q2 ( λ̂
λ  − log  λ̂

 λ  − 1)]}                                                                   (1.2) 

where q > 0 is a shape parameter and k > 0 is the maximum loss parameter.  

To see more about the discussion of bounded loss function, one can refer Bartholomew and Spiring (2002) 
and Kaminska (2010). Under reflected gamma loss function, Meghnatisi and Nematollahi (2009) studied 
the admissibility and inadmissibility of parameter of exponential distribution under various conditions. 
Yang, Zhou and Yuan (2013) studied Bayes estimation of parameter of Exponential distribution under 
Reflected Gamma loss function. In this paper, we will disuss MVUE and Bayes estimate of scale parameter 
and construct confidence interval and Bayesian credible interval for scale parameter. Properties of Bayes 
estimates of scale parameter will also discussed. 
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2. MINIMUM VARIANCE UNBIASED ESTIMATOR 

Let X1, X2, X3………………….Xn be a random sample from a probability distribution having the probability density 
function f(x,λ) given by equation (1.1) and the joint density function of X1, X2………………….Xn be 

L = ∏ f(xi 
𝑛𝑛
𝑖𝑖=1 , λ) 

To find an estimator  T = T (X1, X2………………….Xn) of  λ  such that  

E ( T ) = λ, and Var (T) = Minimum possible  

is called the method of minimum variance and the statistic T is called the Minimum Variance Unbiased 
Estimator (MVUE) of  λ. 

To find T we minimize  E[T − λ]2 subject to the condition E ( T ) = λ . 

The advantage of the method of minimum variance over other methods is that it gives also the variance of 
the estimator. 

Here, Likelihood function is given by L(𝑥𝑥 𝜆𝜆⁄ )  =  e
− ∑ xin

i=1
λ

(Гα)n     λnα   ∏ xi
α−1n

i=1                          (2.1) 

Log L  =  − ∑ 𝑥𝑥𝑖𝑖
λ

  + log ∏ 𝑥𝑥𝑖𝑖
𝛼𝛼−1𝑛𝑛

𝑖𝑖=1   –  n log Гα – n 𝛼𝛼 log λ. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑λ

  = ∑ 𝑥𝑥𝑖𝑖
λ2  − 𝑛𝑛𝛼𝛼 

λ  

           =    
�̅�𝑥
𝛼𝛼    −  λ

λ2
𝑛𝑛𝛼𝛼 

 

Hence,   MVUE of λ  is  λ̂𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  =  
x̅
α  and variance  of   λ̂𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 

λ2

𝑛𝑛𝛼𝛼 . 

3. BAYES ESTIMATION 

The natural family of conjugate prior for λ is Inverted gamma (a,b), with  p.d.f 

g (λ)  = 
e−a

λ       ⁄ ab

Гb  λb+1   ; λ > 0, a > 0, b > 0                                                                                  (3.1)  

where b is shape parameter and a is scale parameter. 

Applying Bayes theorem, we obtain from Equations (2.1 )  and ( 3.1), the Posterior density for  λ  as 

𝑃𝑃 (  λ 𝑥𝑥⁄ )   =  k      e
− ∑ xi+a

λ

λnα+b+1     ; λ > 0, a > 0, b > 0, x > 0, α > 0;                                                                                                                                  
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where k is independent of  λ  and  k−1  =∫   e
− ∑ xi+a

λ

   λnα+b+1
∞

0    d λ. 

Therefore, Posterior density for  λ  is given by 

P(  λ x⁄ )  =    ∑ xi+anα+b    e
−( ∑ xi+a)

λ

  Г(nα+b)     λnα+b+1                                                                                        (3.2) 

Estimation of λ under Reflected Gamma Loss Function: 

By using Reflected Gamma loss function 

E [L ( λ̂, λ)] = ∫ 𝐿𝐿 (∞
0 λ̂  , λ ) * 𝑃𝑃( λ 𝑥𝑥⁄ ) d λ   

  =   ∫ k∞
0 {1 − exp [−q2 ( λ̂

λ  − log λ̂
λ  − 1)]} *  (∑ xi+a)nα+b     e

−( ∑ xi+a)
λ

  Г(nα+b)    λnα+b+1   d λ   

= { k  (∑ xi+a)nα+b

Г(nα+b) ∫  e
−( ∑ xi+a)

λ
∞

0
1

λnα+b+1  dλ } − { k (∑ xi+a)nα+b

Г(nα+b) ∫  e
−( ∑ xi+a)

λ
∞

0
1

λnα+b+1 e[−q2( λ̂
λ  −log λ̂

 λ  −1)] dλ                                            =  

{ k  (∑ xi+a)nα+b

Г(nα+b) ∫  e
−( ∑ xi+a)

λ
∞

0
1

λnα+b+1  dλ } − { k (∑ xi+a)nα+b

Г(nα+b) ∫  e
−( ∑ xi+a)

λ
∞

0
1

λnα+b+1  e[−q2( λ̂
λ  −log λ̂

λ  −1)] dλ} 

= k (∑ xi+a)nα+b

Г(nα+b)   ∗  Г(nα+b)
(∑ xi+a)nα+b −  k (∑ xi+a)nα+b

Г(nα+b)   ∗ eq2 ∫ e
−λ̂ q2

λ
∞

0  * ( λ̂
 λ  )

q2

* 1
λnα+b+1  e

−( ∑ xi+a)
λ  dλ   

= k – k (∑ xi+a)nα+b

Г(nα+b)    eq2 λ̂q2 Г(nα+b+q2 )

(∑ xi+a+q2λ̂  )nα+b+q2 

Now on solving 𝑑𝑑
𝑑𝑑λ

 E [L ( λ̂ , λ)] = 0, we obtain Bayes estimator of  λ . 

Thus, λ̂𝐵𝐵𝐵𝐵   =   ∑ xi + a
nα + b  

Theorem1: For a positive integer q, under Reflected gamma loss function, Bayes estimator of     λ𝑞𝑞  and 
λ−𝑞𝑞   are given respectively by  λ̂BL

q
  and  λ̂BL

 −q
,  where 

 λ̂BL
q

 =  Г (nα+b−q)
Г (nα+b)   *  ( ∑ xi + a)q                                                                                   (3.3) 

and 

λ̂BL
 −q

 =  Г (nα+b+q)
Г (nα+b)    * ( ∑ xi + a)−q    ; [q < 𝑛𝑛𝑛𝑛 + 𝑏𝑏].                                                      (3.4) 

Proof: For q > 0, the Bayes estimator of λq  is 
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  λ  ̂𝐵𝐵𝐵𝐵
𝑞𝑞   =   Eλ x⁄ { λq}  , 

            =  ∫  λq∞
0   P(λ x⁄ ) d λ   

which on utilizing (3.2)  gives  

=   ∫  λq∞
0    (∑ xi+a)nα+b  e

− ∑ xi+a
λ

  Г(nα+b)   λnα+b+1    d λ 

=  Г (nα+b−q)
Г (nα+b)         (∑ xi + a)q     

Hence, (3.3) holds. Similarly, we can prove (3.4). 

4. CREDIBLE INTERVAL FOR  𝛌𝛌 

The Posterior mean is given by  

 E (λ 𝑋𝑋⁄ ) = ∫   λ  P(λ x⁄ ) ∞
0  d λ 

                 = ∫  λ  ∞
0  (∑ xi+a)nα+b  e

− ∑ xi+a
λ

  Г(nα+b)   λnα+b+1    d λ 

                 =   (∑ xi+a)nα+b

  Г(nα+b)      ∫  λ  ∞
0    e

− ∑ xi+a
λ

     λnα+b+1   d λ 

                 =   (∑ xi+a)nα+b

  Г(nα+b)      ∗   Г(nα+b−1)  
(∑ xi+a)nα+b−1 

                 =   ∑ xi+a
nα+b−1                                                                                                                 (4.1) 

E(𝜆𝜆2
𝑋𝑋⁄ ) = ∫   λ2  P(λ x⁄ ) ∞

0  d λ 

                 = ∫ λ2  ∞
0  (∑ xi+a)nα+b  e

− ∑ xi+a
λ

  Г(nα+b)   λnα+b+1    d λ 

                 =   (∑ xi+a)nα+b

  Г(nα+b)      ∫  λ2∞
0    e

− ∑ xi+a
λ

     λnα+b+1   d λ 

                 =   (∑ xi+a)nα+b

  Г(nα+b)      ∗   Г(nα+b−2)  
(∑ xi+a)nα+b−2 

                  =   (∑ xi+a)𝟐𝟐

(nα+b−1) (nα+b−2) 
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Posterior variance =  E(λ2
X⁄ ) − [E (λ X⁄ )]

2
 

                               =   (∑ xi+a)𝟐𝟐

(nα+b−1) (nα+b−2)  − ( ∑ xi+a
nα+b−1)

2
 

                              =   (∑ xi+a)𝟐𝟐 ( (nα+b−1) −(∑ xi+a)𝟐𝟐  (nα+b−2)  
(nα+b−1)2   (nα+b−2)   

                              = (∑ xi+a)𝟐𝟐   
(nα+b−1)2   (nα+b−2)                                                                                (4.2) 

Bayesian Credible interval for λ  is given by 

      𝑚𝑚΄ ± 𝑍𝑍𝛼𝛼 2⁄  𝑠𝑠΄ 

where    𝑚𝑚΄  is the posterior mean and   𝑠𝑠΄  is the posterior standard deviation 

Hence Bayesian Credible interval for scale parameter of Gamma distribution is 

  ∑ xi+a
nα+b−1  ±  Zα 2⁄      ∑ xi+a

nα+b−1 ( 𝟏𝟏
(nα+b−2))

𝟏𝟏
𝟐𝟐                                                                                  (4.3) 

5. CONFIDENCE INTERVAL FOR  𝛌𝛌 

Confidence interval  for λ is given by 

λ̂MVUE ±   Zα 2⁄  S.E (λ̂MVUE ) 

=  x̅
 α  ±   Zα 2⁄  ( λ2

 nα)
1
2                                                                                                                 (5.1) 

Here, 95% Bayesian Credible interval (BCI) are also calculated along with Classical 95% confidence 
interval. The results are presented in table for different sample sizes. 

Table 1: 

Confidence Interval and Bayesian Credible Interval for different values of sample sizes and α = 1.5,   a 
=1.5, b = 0.7 

Sample Size 
n 

Bayesian Credible Interval Confidence Interval 

Lower Limit Upper Limit Length of Interval Lower Limit  Upper Limit Length of  Interval 

30 1.0903 2.0448 0.9545 1.0873 2.2560 1.1687 
60 2.3665 3.1208 0.7543 2.1340 2.9605 0.8265 
90 2.2303 2.8495 0.6192 1.9813 2.6560 0.6747 

120 1.9054 2.3761 0.4707 1.6374 2.2218 0.5844 
150 1.9552 2.2756 0.3203 1.5854 2.1081 0.5227 
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SIMULATION STUDY

In order to assess the statistical performance of Bayes estimates and MVUE, a simulation study is conducted. 
The random samples are generated from (1.1) with true value of  λ = 2 and  α = 1, 1.5 for different samples 
of sizes (n = 30, 60, 90, 120, 150). We use Matlab to generate these samples. All results are based on 1000 
repetitions. Here, Bayes estimator and MVUE are computed under bounded loss functions for a = (0.4, 0.5, 
1, 1.5). The Bayes estimator and MVUE for the scale parameter are averaged over the total number of 
repetitions. The results of the simulation study are summarized in tables 2 and 3. Graphs are plotted by 
taking values of  λ̂BL, λ̂MVUE  along Y-axis and sample size along X-axis to see the behaviour of Bayes 
estimators and MVUE and to find an admissible estimator.  
 

Table 2: 

Values of Bayes estimator and minimum variance unbiased estimator of λ  for different values of sample 
size, a and α . 

Sample Size 
𝛂𝛂 = 1, a = 0.4, b = 0.6 

 
𝛂𝛂 = 1, a = 0.5, b = 0.7 

 
 

n �̂�𝛌𝑩𝑩𝑩𝑩 �̂�𝛌𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 �̂�𝛌𝑩𝑩𝑩𝑩 �̂�𝛌𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 

30 2.1377 2.1671 2.1661 2.2000 
60 2.1009 2.1152 2.2836 2.3020 
90 1.9341 1.9426 2.3516 2.3644 

120 2.0917 2.0988 1.9312 1.9383 
150 1.8396 1.8443 1.9821 1.9880 

 
Table 3: 
 

Sample Size 
𝛂𝛂 = 1.5,  a = 1, b = 0.7 

 
𝛂𝛂 = 1.5, a = 1.5, b = 0.7 

 
 

n �̂�𝛌𝑩𝑩𝑩𝑩 �̂�𝛌𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 �̂�𝛌𝑩𝑩𝑩𝑩 �̂�𝛌𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 

30 2.1012 2.1112 2.1821 2.1824 
60 1.6503 1.6520 2.1815 2.1817 
90 1.9456 1.9482 1.8290 1.8278 

120 1.8593 1.8610 1.9102 1.9095 
150 2.1944 2.1967 2.2953 2.3000 
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Graph of Bayes estimator and MVUE of scale parameter versus sample size 
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Graph of Bayes estimator and MVUE of scale parameter versus sample size 
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Graph of Bayes estimator and MVUE of scale parameter versus sample size 
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Graph of Bayes estimator and MVUE of scale parameter versus sample size 
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CONCLUSION 

From table 1, it is observed that the average length of confidence interval and Bayesian credible interval 
decreases when sample size increases. It is also noted from the table that average length of Bayesian 
Credible Interval is smaller than that of Confidence Interval.  

From table 2-3, we conclude that in situations involving estimation of scale parameter, Bayes estimator 
under Bounded loss function could be effectively employed than MVUE as the convergence of the Bayes 
estimator towards the true values is more than that of MVUE. Thus, we suggest to use Bayes approach under 
bounded loss function for estimating scale parameter of Gamma distribution. 
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