

Original Research Paper

Pharmacy

REVIEW ON THE MOST POPULAR AYURVEDIC PLANT WITHANIA SOMNIFERA (ASHWAGANDHA)

Naveen Kumar*	Department of pharmacology ,Maharishi Arvind Institute of pharmacy, Jaipur (Rajasthan)*Corresponding Author
Rajesh Asija	Principal, Maharishi Arvind Institute of pharmacy, jaipur (Rajasthan)
Deepak Godara	Director, Institute of Biomedical and Industrial Research, jaipur (Rajasthan)

Ashwagandha (Withaniasomnifera) has become one of the most popular Ayurvedic herbs and it is widwly used herb. It belongs to the family Solanaceae Thousands year ago in the time of ayurveda ashwagandha was known as rasayana. Ashwagandha cultivated in india in large scale. It also found in Africa .America and many other countries. Its roots and orange-red fruit have been used for hundreds of years for medicinal purposes. The root of ashwagandha is used as medicine in many disease The herb is also called Indian ginseng or winter cherryThis review article is presented to compile all the medinal activity of ashwagandha. The dried root of ashwagandha contain many chemical constitute which is used for the treatment of many disease. Withaniasomnifera show many pharmacological activity like antioxidant, anxiolytic, adaptogen, memory enhancing, antiparkinsonian, antivenom, antiinflammatory, antitumor properties. It also show the effects like immunomodulation, hypolipidemic, antibacterial, cardiovascular protection, sexual behaviour, tolerance and dependence

KEYWORDS: Withaniasomnifera, Withanolides, Pharmacological activities.

INTRODUCTION

Withania somnifera (WS), also known as ashwagandha and winter cherry, it is used as a ayurvedic herb and used as a medicinal plant since 3000 years. The roots of the plant are very useful, which are used in the treatment of the many disease like, arresting the ageing process, precure the body in debilitated conditions, by creating a sense of mental wellbeing [1]. It can be used for all the group of age and it does not give any side effect. It can also be used in pregnancy [2]. The roots of WS show the medicinal activity due to the presenseof withanolides, which is a steroidal lactone [3]. The leaves of WS are used in the treatment of tumors and tubercular glands [4]. A number of with anolide steroidal lactones have been isolated from the leaves of W. somnifera [5]. and exhibit antibacterial, anti-fungal and antitumor properties [6]. Ashwagandha is used to relax the mind, relieve weakness and nervous exhaustion, increse sexual energy and promote healthy sleep. [7]. The asgand is divided in two parts in unani literature 1) AsgandNagori and 2) AsgandDakani. AsgandNagori show more pharmacological action.[8].

TAXONOMICAL CLASSIFICATION

Kingdom: Plantae Subkingdom: Tracheobionta Super division: Spermatophyta Division: Angiosperma Class: Dicotyledons Order: Tubiflorae Family: Solanaceae Genus: Withania

BOTANICAL DESCRIPTION

Species:somniferaDunal

WS is a small, woody shrub in the Solanaceae family that grows about two feet in height. It can be found growing in Africa, the Mediterranean, and India. An erect, evergreen, tomentose shrub, 30-150 cm high, found throughout the drier parts of India in waste places and on bunds. Roots are stout fleshy, whitish brown; leaves simple ovate, glabrous, those in the floral region smaller and opposite; flowers inconspicuous, greenish or lubrid-yellow, in axillary, umbellate cymes; berries small, globose, orange-red when mature, enclosed in the persistent calyx; seeds yellow, reniform. The roots are the main portions of the plant used therapeutically. The bright red fruit is harvested in the late fall and seeds are dried for planting in the following spring.Parts used: Whole plant, roots, leaves, stem, green berries, fruits, seeds, bark are used.

CHEMICAL COMPOSITION

Laboratory analysis show that the root of withaniasomnifera contain 35 chemical constituents [9]. The biologically active chemical constituents are alkaloids (isopellertierine, anferine), steroidal lactones (withanolides, withaferins), saponins, and withanoloides. Withaniasomnifera is also rich in iron. The roots of Withaniaso mnifera consiswithanolides, which are believed to account for its extraordinary medicinal properties. Withanolides are steroidal and bear a resemblance, both in their action and appearance, same as the Asian ginseng (Panax ginseng) known as ginsenosides. Ashwagandha'swithanolides have been researched in a variety of animal studies examining their effect on numerous conditions, including immune function and also on cancer [10]. Withanine is tha mainly chemical constitute among all the alkaloid. Chemical analysis of Ashwagandha show its main constituents to be alkaloids and steroidal lactones. The other alkaloids are, somnine, withananine, pseudo-withanine, tropine, somniferine, somniferinine, 3-a-gloyloxytropane, choline, cuscohygrine, anafe rineandanahydrine. Two acyl sterylglucoside viz. sitoindoside VII and sitoindoside VIII have been isolated from root. The leaves contain steroidal lactones, which are commonly called withano lides. The withanolidescontain C28 steroidal nucleus with C9 side chain, with a six membered lactone ring [11]. Twelve alkaloids, 35 withanolides, and several sitoindosides from Withaniasomnifera have been isolated and studied. Asitoindoside is a withanolide containing a glucose molecule at carbon 27. Most of withaniaso mnifera pharmacological activity has been distributed to two main with anolides, with a ferin A and with a nolideD.s The roots are contain the lactone steroidal which are know as withanolides are mainly show the therapeutic activity and general health maintenance like anti-epileptic, combating infectious agents, anti-ageing, antioxidant, hypoglycemic, hypocholesterolemic activities, immunomodulation, memory enhancer ,anti-cancer, and in common an effective adaptogen.[12-131

PHARMACOLOGICAL ACTIVITY

Withaniasomnifera have many pharmacological properties like antibiotic, deobstruent, adaptogen, aboritifacient, antiinflamm atory, diuretic, aphrosidiac, narcotic, sedative, astringent, and tonic. Ashwagandha has been found to: Provide potent antioxidant protection [14,15]. Stimulate the activation of immune system cells, such as phagocytes and lymphocytes [16,17]. promote wellness and Counteract the effects of stress [18].

ANTIBIOTIC ACTIVITY

The root and leaves are show the anti bacterial activity . Withaferine A was active against Micrococcus pyogenesvaraureus. Withaferin A inhibited Ranikhet virus. Withaferin A in concentration of 10µg/ml inhibited the growth of various Gram-positive bacteria, acid-fast and aerobic bacilli, and pathogenic fungi. The shrub's extract is active against Vaccinia virus and Entamoeba histolytica [19]. Asgandis protective against systemic Aspergillus infection. This protective activity was probably related to the activation of the macrophage function revealed by the observed increases in phagocytosis and intracellular killing of peritoneal macrophages induced by Ashwagandha treatment in mice [20]. Antibiotic activity of Withaferin A is due to the presence of the unsaturated lactonering. The lactone showed strong therapeutic activity in experimen tally induced abscesses in rabbits, the being somewhat stronger than that of Penicillin. It substantiates the reputation of the leaves as a cure for ulcers and carbuncles in the indigenous system of medicine [21].

ANTI-AGING ACTIVITY

The anti aging activity can be determine by using clinical trial .Dose of 3 grams are given in the group of 100 males in the age category of 50-59. The subjects experienced significant improvement in hemoglobin, red blood cell count, hair melanin, and seated stature. Serum cholesterol decreased and nail calcium was preserved. it also show the lincreasement in the sexual performance [22].

ANTI-DIABETIC EFFECT

Sarangi and co-workers conducted an investigation to explore the possibilities of usingleaf and root extracts of W. somnifera against diabetes mellitus (DM) and also to examine their hypoglycae mic and hypolipidaemic effects onstreptozotonic-induced diabetic rats [23]. The extract possess hypoglycaemic and hypolipi-daemic properties and hence useful in diabetes mellitus. Another study show significant positiveanti-diabetic activity of W. somnifera on diabeticrats when compared with Glibenclamidestandard drug. Anti-diabetic activity may bedue to increase in hepatic metabolism, increasedinsulin release from pancreatic β-cells or insulinsparing effect [24]. W. somnifera root (WSREt) and leaf (WSLEt) extract show hypoglycaemicand hypolipidaemic effect on alloxaninduceddiabetic rats [25]. Andallu and Radhika (2000), studied the hypoglycemic, diuretic and hypocholesterolemic effect of roots of W.somnifera on six mild NIDDM and six mildhypercholesterolemic human subjects. Theirstudies indicate that the plant can be apotential source of hypoglycemic, diuretic andhypocho lesterolemic drugs. No adverse effectswere observed during clinical observations [26].

ANTI-OXIDANT ACTIVITY

A study done by Bhattacharya et al, 1997 investigated the antioxidant activity of active principles of Withaniasomnifera, consisting of equimolar concentrations of sitoindosides VII-X and Withaferin A, for their effects on rat brain frontal cortical and striatal concentrations of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX). When active glycowithanolides of W. somnifera (WSG) (10 and 20 mg/Kg, i.p.), were administered once daily for 21 days, there was a dose-related increase in SOD, CAT and GPX activity in frontal cortex and striatum, which was statistically significant on days 14 and 21.[27] Another study reported by Bhattacharya in 2000 investigated the antioxidant activity of Withaniasomnifera (WS) glycowithanolides in chronic footshock stress induced changes in rat brain frontal cortex and striatum. The stress procedure, given once daily for 21 days, induced an increase in superoxide dismutase (SOD) and lipid peroxidation (LPO) activity, with concomitant decrease in catalase (CAT) and glutathione peroxidase (GPX) activities in both the brain regions. WS glycowithanolides (WSG) administered orally 1 h prior to the stress procedure for 21 days, in the doses of 10, 20 and 50 mg/Kg, induced a dose-related reversal of the stress effects. Thus, they concluded that WSG tended to normalise the augmented SOD and LPO activities and enhanced the activities of CAT and GPX. Their results indicate that, at least part of chronic stress-induced pathology may be due to oxidative stress, which is mitigated by WSG, lending

support to the clinical use of the plant as an antistressada ptogen[28].

ANTI-STRESS ACTIVITY

Archna et al conducted a study in 1998 for evaluating the antistressor properties using adult Wistar strain albino rats and cold water swimming stress test. The results indicated that the drug treated animals show better stress tolerance[29].

ANTI-CONVULSANT ACTIVITY

Administration of Asgand root extract was found to reduce jerks and clonus in 70% and 10% animals respectively with dose of 100mg/kg and reduction in the severity of pentylenetetrazole (PTZ)-induced convulsions was evident from EEG wave pattern [30]. Asgand root extract showed reduction in severity of motor seizures induced by electrical stimulation in right basilateralamygdaloid nuclear complex through bipolar electrodes. The protective effect of Asgand extract in convulsions has been reported to involve GABAergic mediation [31].

ANTI-INFLAMMATORY ACTIVITY

Withaferine A is the main compound which show the anti inflammatory activity .It is mainly found in the root of the plant. It is as effective as hydrocortisone sodium succinate dose for dose [32] . It suppress the arthritic syndrome and does not give any toxic effect .Animals which are treated by hydrocortisone show the side effect like weight lose but the animals which are treated by the Withafierine A are show the gain in the weight that's why it is more useful . It is interesting that Withaferin A seems to be more potent than hydrocortisone in adjuvant-induced arthritis in rats, a close experimental approximation to human rheumatoid arthritis. In its oedema inhibiting activity, the compound gave a good doseresponse in the dose range of 12-25 mg/kg body weight of Albino rats intraperitoneally and a single dose had a good duration of action, as it could effectively suppress the inflammation after 4 hours of its administration [33]. Asgand (Withaniasomnifera) has been shown to possess anti-inflammatory property in many animal models of inflammations like carrageenan-induced inflammation, cotton pellet granuloma and adjuvant-induced arthritis Detailed studies were carried out to investigate the release of serum β-1 globulin during inflammation by two models of inflammations viz. primary phase of adjuvantinduced arthritis and formal dehydeinduced arthritis. The experiments showed interesting results as most of the APR wereinfluenced in a very short duration and also suppressed the degree of inflammation [34].

IMPROVE CARDIORESPIRATOR ENDURANCE

The cardiorespiratory endurance can be measure by measuring the oxygen consumption in the body by calculate the VO2 max level by a 20 m shuttle run test.lt is calculated by a process in which 2 group are taken .Difference in mean and change from the base line VO2 max is calculated by student t test.ashwagandha root extract contain many useful .The extract of the root of ashwagandha is used to improving the cardiorespiratory endurance.[35]

CNS DISORDER

CNS disorder is become a major threat now a days. Thousands of the people are suffering from many CNS disorders . Mainly disease belongs to the CNS disorder are Parkinson Disease, Alzheimer's Disease, Epilepsy, Anxiety,, Huntington's Disease. All the disease related to the CNS disorder are due to the imbalancing of the neurons. Withaniasomnifera is widely used in the treatment of these disease. It is work as a GABA ergisamberrance. Which is responsible for many neuronal disease. The root of the ashwagandha is used for balancing the GABAERGIC system and improve the acetylcholin erage system. [36]. The root extract of W. somnifera could induce axon and dendrite outgrowth, suggesting its potential effect on neuronal regeneration. [37,38]

CONCLUSION

Withaniasomnifera is one of the most useful medicinal plant since

the Ayurveda.It is one of the plant which show less side effect.It is very useful in the treatment of many disease. The dried root of ashwagandha contain many chemical constitute which is used for the treatment of many disease. Withaniasomnifera show many pharmacological activity like antioxidant, anxiolytic, adaptogen, memory enhancing, antiparkinsonian, antivenom, antiinflammat ory, antitumor properties.It also show the effects like immunomo dulation, hypolipidemic, antibacterial, cardiovascular protection, sexual behaviour, tolerance and dependence.

REFERENCES

- Weiner, M.A, Weiner, JAshwagandha (India ginseng). In: Herbs that Heal. Mill Valley, CA: Quantum Books, 70–72;1994.
- S. Sharma, S. Dahanukar, S.M. Karandikar. Effects of long-term administration of the roots of ashwagandha and shatavari in rats. Indian Drugs. 1985;133–139.
- AmrinSaiyed, NasreenJahan, Sana Fatima Majeedi, Mariya mRoqaiya, Medicinal properties, phytochemistry and pharmacology of Withaniasomnifera: an important drug of Unani Medicine, ISSN 2320-4818 JSIR 2016; 5(4):156-160
- Chopra, R.N. Glossary of Indian Medicinal Plants. New Delhi: Academic Publishers India; 1994.
- Glotter E, Kirson I, Abraham A, Lavie D. Constituents of Withaniasomnifera Dun—13. The withanolides of chemotype III. Tetrahedron. 1973;29(10):1353–1364.
- Devi PU, Sharada AC, Solomon FE. Antitumor and radios ensitizing effects of Withaniasomnifera (Ashwagandha) on a transplantable mouse tumor, Sarcoma-180. Indian J Exp Biol. 1993;31(7):607-11
- 7. "Withaniasomnifera". Alternative Medicine Review. Find Articles.com. 13 Oct. 2008.
- Behl PN, Arora RB, Srivastava and Malhotra SC. Herbs Useful in Dermatological Therapy; New Delhi: CBS Publishers and Distributors, 141-142; 1993.
- Rastogi RP, Mehrotra BN, Compendium of Indian Medicinal Plants, Central Drug Research Institute, New Delhi, Vol. 6;1998.
- Grandhi, A. Comparative pharmacological investigation of ashwagandha and Ginseng. J Ethnopharmacol (Ireland). 1994;3:131-135.
- Krutika J, SwagataTavhare , KalpeshPanara , Praveen Kumar A , NishteswarKarra Studies of Ashwagandha (WithaniasomniferaDunal), International Journal of Pharmaceutical & Biological Archives 2016; 7 (1): 1-11
- Dhuley JN. Adaptogenic and cardioprotective action of Ashwagandha on rats and frogs. J Ethnopharmacol. 2000;70:57-63...
- Tiwari R, Chakraborty S, Saminathan M, Dhama K, Singh SV. Ashwagandha (Withaniasomnifera): Role in safeguarding health, immunomodulatory effects, combating infections and theapeutic Applications: A Review. J Biol Sci. 2014;14:77-94.
- Abou-DouhAM. New withanolides and other constituents from the fruit of Withaniasomnifera. Arch Pharm. 2002;335:267-76.
- Panda S, Kar A. Evidence for free radical scavenging activity of Ashwagandha root powder in mice Indian J Physiol Pharmacol. 1997;424-426.
- 16. Wagner H, Norr H, Winterhoff H. Plant adaptogens, Phytomed 1994;63-76.
- Singh B, Saxena AK, Chandan BK et al. Adaptogenic activity of a novel, withanolidefree aqueous fraction from the roots of Withaniasomnifera Dun. Phytother Res. 2001;15:311-318.
- Singh B, Chandan BK, Gupta DK. Adaptogenic activity of a novel withanolide -free aqueous fraction from the roots of Withaniasomnifera Dun. (Part II). Phytother Res. 2003;531-536.
- Anonymous. The Wealth of India. Publications and Information Directorate, Council of Scientific and Industrial Research (CSIR), New Delhi; 580-85; 1982.
- Dhuley JN. Effect of Asgand on lipid peroxidation in stress induced animals. J Ethnopharmacol. 1998;7:173-176.
- Anonymous. The Wealth of India. Publications and Information Directorate, Council
 of Scientific and Industrial Research (CSIR), New Delhi; 580-85; 1982
- Bone K. Clinical Applications of Ayuvedic and Chinese Herbs. Queensland, Australia: Phytotherapy Press. 1996: 137-41.
- Sarangi A, Jena S, Sarangi AK, Swain B. Anti-diabetic effect of Withaniasomnifera root and leaf extracts on streptozotocin induced diabetic rats. J Cell & Tissue Res. 2013;13(1):3597
- Navinder, Khatak M, Sehrawat R, Khatak S. A Comparative Study: Homoepathic medicine and a medicinal plant Withaniasomnifera for antidiabetic activity. J Pharma&Phytochem. 2013;2(3):109-112.
- Udayakumar R, Kasthurirengan S, Mariashibu TS, Rajesh M, Anbazhagan VR, Kim SC, Ganapathi A, Choi CW. Hypoglycaemic and hypolipidaemic effects of Withaniasomnifera root and leaf extracts on alloxan-induced diabetic rats. Int J Mol Sci. 2009;10(5):2367-2382.
- Andallu B, Radhika B. Hypoglycemic, diuretic and hypocholesterolemic effect of Winter cherry (Withaniasomnifera, Dunal) root. Ind J Exp Biol. 2000;38:607-609
- Bhattacharya SK, Satyan KS and Ghosal S. Antioxidant activity of glycowithanolides from Withaniasomnifera. Indian Journal of Experimental Biology. 1997;35(3):236-239.
- Bhattacharya A, Ghosal S and Bhattacharya SK. Anti-oxidant effect of Withaniasomniferaglycowithanolides in chronic footshock stress induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in ratfrontal cortex and striatum. Journal of Ethnopharmacology, 2000;74(1):1-6.
- Archana R and Namasivayam A. Antistressor effect of Withaniasomnifera. Journal of Ethnopharmacology. 1998;64(1):91-93.
- Kulkarni SK, George B. Anticonvulsant action of Withaniasomnifera root extract against pentylenetetrazole (PTZ)-induced convulsions in mice. Phytotherapy Res. 1996;95(10):447-449.
- 31. Kulkarni SK, Sharma A, Verma A, Ticku MK. GABA receptor mediated anticonvulsant action of Withaniasomnifera root extract. Indian Drugs. 1993;305-312.
- Khare CP. Indian Medicinal Plants-An Illustrated Dictionary. First Indian Reprint, Springer (India) Pvt. Ltd., New Delhi. Kirtikar KR, Basu BD. Indian Medicinal Plants 2:717-718; 2007.
- Rastogi RP, Mehrotra BN. Compendium of Indian Medicinal Plants. 2nd Reprint, Central Drug Research Institute, Lucknow and National Institute of Science Communication, Council of Scientific and Industrial Research, New Delhi Vol. 1: 434-

- 436;Vol. 2: 708-710;Vol. 3: 682-684;Vol. 4: 765-766;Vol. 5: 889-891;Vol. 6: 148, 1998.
- Anabalagan K, Sadique J. Withaniasomnifera, a rejuvenating herbal drug which controls alpha-2 macroglobulin synthesis during inflammation. Intl J Crude Drug Res. 1985;23:177-183
- BakhtiarChoudhary, A. Shetty, and Deepak G. Langade, Efficacy of Ashwagandha (Withaniasomnifera [L.] Dunal) in improving cardiorespiratory endurance in healthy athleticadults, Ayu. 2015 Jan-Mar; 36(1):63–68
- Rakesh Kumar Ruhela , ShringikaSoni and BikashMedhi, Therapeutic Potential of Withaniasomnifera in CNS Disorders: A Neuropharmacological Review, European Journal of Medicinal Plants 16(2): 1-12, 2016, Article no. EJMP.24187
- Kuboyama T et al. Axon- or dendritepredominant outgrowth induced by constituents from Ashwagandha. Neuroreport 2002;13:1715–1720.
- Tohda C et al. Search for natural products related to regeneration of the neuronal network. Neurosignals 2005; 14: 34–45.