
1. Introduction
The moving boundary problems occur mostly during the heat �ows 
with phase changes. The phenomena of solidi�cation and melting 
are associated with many practical applications. They take place in a 
diverse range of industrial processes, such as metal processing, 
solidi�cation of castings, environmental engineering and thermal 
energy storage system in a space station. Material is subjected to a 
phase change in these processes. Thus, a boundary separating the 
two phases develops and moves. The position of the moving 
boundary cannot be identi�ed in advance, but has to be 
determined as a part of the problem solution process. These 
problems are also referred to as Stefan problems.

1.1. Problem statement
At one end of a semi-in�nite sheet of solid, initially at temperature 
zero (normalized), heat �ux g(t) is applied. The melting process starts 
and when the melting reaches a distance of s(t), the diffusion of heat 
in the liquid phase is described by the moving boundary problem 
[1]

The heat equation having temperature T is:

The Dirichlet condition:

Stefan condition:

Diffusion coefficient is normalized to unity and diffusion of heat 
beyond s(t) is assumed to be not taking place. Stefan number β is a 
constant depending on the density, speci�c heat and latent heat of 
the material. This is a one-phase problem. Two-phase problem 
considers the diffusion beyond s(t) [2]. 
 
1.2. Theoretical background
Starting with any standard numerical method for Stefan problem is 
not possible as the initial domain for  X does not exist. An extensive 
interest was shown by a large number of researchers to develop 
approximate methods for solving this problem. Reference is made 

in the books [3], [1] and [4] describing these efforts. Only one 
method [5] is relevant to us in the context of the method to be 
developed. For a �xed space step, they were the �rst to use variable 
time step sizes to track the front. Subsequently Douglas and Gallie 
improved iterative procedure in [6] for �nding the time step. In [7] 
there were proposed applied level set and moving grid methods 
and phase �eld model to the classical problem of one and two 
phases with insulated ends over a �nite interval. Finite difference 
method for Stefan problem was used in [8] and the Tau method used 
in [9]. Even these front tracking methods have made certain 
transformations of the original problem before writing down the 
�nite difference method. 

Another approach relevant to us is the well known method of lines 
developed in [10] where the mathematical problem was discretized 
with respect to time resulting in a system of ordinary differential 
equations with respect to space variable. In this paper, it was 
obtained, at each time level, the position of the interface by solving 
the boundary conditions followed by the solution of the system, 
using Euler's method. We can interpret the present work as 
discretization of space �rst and solving the ordinary differential 
equations in time by modi�ed Euler's method, i.e. Crank-Nicholson 
scheme [1], while �nding the points on the interface. The method of 
lines is, of course, possible only for �nite space domain.  

We keep the problem as it occurred in formulation (1-4) and use the 
�nite difference method applicable to any parabolic problem.

2. Preliminary setup of the method
Let h be a �xed given discrete step size in space. Let k , k  …be the 1 2

time intervals needed for the front (interface) to move this speci�ed 
distance of h. If T  is the temperature at x  = ih,                 T  = 0, i ≥ n, i, n i i, n

then i = n gives a point on the interface. 

If we know the T values along CD, it is easy to solve for the variable 
values along AB by any method applicable to a parabolic problem. 
We use Crank-Nicholson scheme. The question is how to �nd  k  n+1

and to start this procedure, how to obtain k and k  along with T value 1 2

at L. Obtaining k and k  is presented in section 3, by application of 1 2

Greens theorem and �nite difference form of the parabolic 
equation. Finding k  is presented in section 4 while simultaneously n+1

obtaining T values.
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Fig. 1. Moving boundary with �xed space step and variable time 
step.

Crank-Nicholson scheme for the diffusion equation (1) is

                        (5)
                        
Sometimes we need the fully implicit scheme (for manipulations at a 
later stage) as follows

                        (6)

The �nite difference scheme (5) is of second order in space and time 
and is computationally stable [11]. To enable us using this scheme, 
we need to know a value of temperature T at three points: (0, 2), (1, 2) 
and (2, 2) (see Fig. 1). Of these three points T  = 0; T  and T  are not 2,2 0,2 1,2

known. To know these starting values, we need to �nd time step 
sizes k and k . The method developed in this article hinges on one's 1 2 

ability to �nd k and k . Once we do this, we can �nd T , T , T at any 1 2 0,3 1,3 2,3 

value of k , the time needed for the interface to move a distance of h 3

is known. We can continue to solve the diffusion equation for n = 3, 4, 
5… number of points along the line parallel to x-axis increasing by 
one. The example originally considered in [5] is interpreted in terms 
of our method and their algorithm is analyzed. 

3. Finding time step sizes k  and k  1 2

For a given h, we need to �nd k ; k ; T ; T  and T Hence we need to 1 2 0, 1 0, 2 1, 2 

develop sufficient number of equations to obtain these �ve 
components. To our knowledge there are three ways, other than 
series expansion, one can generate these equations:

(i) Application of Green's theorem of vector calculus to a closed 
region over which the problem is de�ned. We have several choices 
in choosing this region;
(ii) collocation at one or more points of the front;
(iii) Finite difference equivalents of the parabolic equation at chosen 
points of the lines t = t  or t = t .1 2

These choices may vary from problem to problem depending on the 
available data and is also a matter of convenience for solving these 
equations. Neither we can collocate nor can we use the basic 
equation at O. Green's theorem comes handy in this situation. Using 
Green's theorem we get the expression at  O. Green's theorem 
comes handy in this situation. Using Green's theorem we get the 
expression

where c is the boundary of the closed region under consideration.
As T = 0 along segment SO, we have

              (7)

We use Trapezoidal rule for the �rst two integrals in (7) and, noting 
that                       along SO, we obtain

The relation (7) can be reduced to 

                        (8)            

To �nd T  we use �nite difference which is equivalent to the basic 0,1

equation (1) at point P (Fig. 1) and obtain

              (9)

The temperature T  is evaluated using T = g(t). That is,-1,1 x 

giving the expression T  = –2hg(k )Thus, the equation (9) is reduced -1,1 1

to
            (10)
We obtain from (8)

            (11)

The equation (11) can be solved for k  and followed by T  using (10).1 0,1

Now we consider the region PQRS (Fig. 1) in order to apply Green's 
theorem, collocation at point R and �nite difference form of the 
basic equation (1) at point L. Then we have

from where we obtain
          
                                                                                                                          (12)

By collocation at point R, that means that                           at T  = 0, 2,2

we have
                                   
                     (13)

At point L, in similar way we have                             from where and

 taking into account (13) we obtain formulas for temperatures

From (12) and (14) we have the equation for k  as follows:2

Knowing k  we can solve this equation for k .1 2

Notice that one can choose also the region SLRS for the application 
of Green's theorem. In place of collocation at point R, we can use 
�nite difference equivalent at point Q, as well. It is ultimately the 
ease of obtaining k , T  and T  that decided the issue. 2 0,1 0,2

4. Finding time step k  n+1

We have n+1 unknowns T , T , T , …, T , T  at t = T  with n equations 1 2 3 n n+1 n+1

coming from the Crank-Nicholson scheme. Much needed another 
equation comes from the Stefan condition (4). Using three point one 
sided �nite difference approximations we have the following 
expression:

from which the following equation is derived: 

                                                                                                                          (16)                                                                                       
With i = n in the expression (6), we have  

from which we obtain

            (17)

 In fact, we cannot use Crank-Nicolson scheme at point (n, n+1), 
since this point occurs outside the domain in the difference 
equation). Substituting (17) in (16), we obtain

            (18)
 
and then from (18) we have
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                     (19)

From (17) and (18) it follows the equation

                     (20)

and temperature T1,2 can be taken from (14).

For any given time step                      obtain T from (20) and solve n,n+1 

the tri-diagonal system of equations (5) for i = 1, 2, 3, …, n–1 (arising 
out of Crank-Nicholson scheme) using T  as a boundary condition. n,n+1

Knowing T one can evaluate F using (19). Time step is found by n-1,n+1 

bisection method with the sign of F.

5. Numerical example
Experimental investigations of the problem were conducted by 
Douglas and Gallie in [9] and later improved in [10]. They calculated 
points on the front at heat �ux g(t) = –1 and Stefan number  = 1 with 
step size h = 0.1, 0.05, 0.025 and 0.01.  The results are summarized in 
Table 1 where are shown in cells with grey background. Method 
used in [10] was able to calculate time step sizes only for x varying 
from 0.2 through 3. 
     
Results by our VTFS method implemented in FORTRAN 99 are 
presented up to x = 20 (it should be noticed that the method, by its 
nature, has no upper limit for x) with four different step sizes in an 
attempt to establish the accuracy of our results. For each time step 
the iteration was continued until accuracy of   is achieved.410-
     
For all values of x, number of iterations was the same and 
approximately equal to values reduced to Table 2.     

Accuracy is less, for large x, in the results of [10]. Discretization error 
is more in the implicit scheme as compared to Crank-Nicholson 
scheme used in our VTFS method.

Table 1. Points on the front at heat �ux  Stefan number  ()1;gt=- 1.b=

Symbol '*' indicates non availability of data in [10].

Table 2. Iteration numbers of VTFS method for different step sizes h

Table.2a: Example 2a:  T (0, t) = g(t) = 1, β = 2.0

*The constant α depends on β in the true solution.
     
6. Accuracy of time step sizes calculation 
Discontinuity in the initial and boundary conditions normally occur 
in the formulation of Stefan problems. Different techniques may 
give different values for these initial time steps. But as long as they 
are obtained by a consistent numerical method, the difference 
between two solutions with two different sets of k  and k  goes on 1 2

reducing with time. This is what we observed in our computational 
experiments. This is supported by Pearson [17] while discussing the 
effect of impulsive condition for the standard heat equation de�ned 
over the unit length. 

Consider (19) as a quadratic form in time step size k  and obtain n+1

value of k  as its positive root:n+1

 
                     (21)

The procedure now is to assume any value for k , to obtain T  and n+1 n,n+1

solve the tridiagonal system as before. Knowing T , obtain the n-1,n+1

root of the quadratic and repeat the process. It took �ve or six 
iterations for the process to convergent. In [10], it was not 
established the convergence of iterative process. Convergence of 
both VTFS method and one of [10] can be established with the help 
of the theorem by Koneru and Lalli [18].

Suppose we have (n – 1) relations involving n variables x , x , x , .., x , 1 2 3 n

that is

                      (22)
And another relation
                     (23)

Let the eigen values of the Jacobi matrix of the (n – 1) functions in (i) 
be less than unity in magnitude, then the value is a neighborhood of 
the true solution of (i) with x  given by (ii). The iteration de�ned by (I) n

converges if we start in that neighborhood and after every iteration 
x  is obtained from (ii). This is established in [18].n

Applying this result to our method, we obtain the system (22) to be 
linear. The tri diagonal system occurring in the problem is a 
diagonally dominant and the Jacobi matrix is a convergent one. Any 
Jacobi based iteration, e.g. Gauss-Seidel or SOR, converges for any 
initial approximation for the variables. Rather than carrying one 
iteration we solve the tri diagonal system (thereby implying that 
iteration is carried until convergence) and then obtain x . For any n

given x  if there exists a set of x , x , x , .., x we can then take any n 1 2 3 n-1 

arbitrary value for x  for starting the process. That means that we can n

use any step size h in our main problem (1-4).
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