
INTRODUCTION
Let G be a �nite nonabelian group d being the degree of some 
nonlinear irreducible character degree of G. we derive theorem 
when d is the maximal irreducible character degree of G.

It is known that d divides |G|, so there is an integer e such that |G| = 
2d(d+e). Since d  < |G|, where e is a positive integer. Berkovich has 

shown that e = 1 if and only if G is a 2-transitive Frobenius group. It is 
known that there are 2-transitive groups of arbitrarily large order, 
and so, d may be arbitrarily large. when e > 1. But N. snyder has 
proved that |G| ≤ (2e)! under the restriction e > 1. He showed that if e 
= 2, then |G| ≤ 8 and if e = 3, then |G| ≤ 54, and in both of these cases, 
there exist examples of these orders; Thus the bounds given are best 

6possible for e = 2 and 3.  Isaacs has shown that |G| ≤ Be  for some 
6 4universal constant B and in many cases that |G| ≤ e  + e . Durfee and 

6 4Jensen have proved that |G| ≤ e −e  without application of non 
abelian simple group. When G is solvable and either e is a prime or e 

4is divisible by at least two distinct primes, they prove that |G| ≤ e  − 
3 4 3e . Hence, the only possibility that G is solvable and |G| > e  − e  is 

when e is a prime power that is not prime. We thus �nd that when e = 
4 32 and e = 3, the expression e  − e  yields the bound. 

Isaacs has shown that there exists a solvable group G for every prime 
3 2power q of order q (q − 1) where d = q(q − 1). In case e = q, so d = e  − 

4 3e and |G| = e − e . On the other hand, there are no known groups G 
4 3 4where |G| > e  − e , which implies that |G| ≤ e  − e  is the correct 3

bound. 

Gagola studied groups that have an irreducible character that 
vanish on all but two conjugacy classes. He proved that if G has a 
character x∈Irr(G) so that x vanishes on all but two conjugacy 
classes of G.  x is called a Gagola character. Gagola proved that such 
Gagola characters are unique. Also, he proved that G has a unique 
minimal normal subgroup N. He proved that N is an elementary 
abelian p-group for some prime p. (G, N) is a p-Gagola pair if G has a 
Gagola character and N is the unique minimal normal subgroup of G 
and is a p-group.

Theorem 1
Let (G, N) be a p-Gagola pair some prime p. If P is a Sylow p-subgroup 

2 2of G, then d ≤ e  − e and |N|  ≤ |P : N| = |G : N| . p

Proof:
There are three cases: -
(i) when p is odd. (ii) when p = 2 and G is solvable, and for (iii) when p 
= 2 and G is nonsolvable. we prove the case i) when p = 2 and G is 
solvable. In particular, when p = 2 and G is solvable, for which it is 

desirable to derive properties of Suzuki 2-groups. The full 
automorphism group of a Suzuki 2-group is obtained. We prove it 
into there steps by taking its different values for p. Hence, theorem is 
proved.  

Since |G| = d(d + e), to prove |G| ≤ e4 − e3 it  is sufficient to prove that 
d ≤ e2 − e and to prove |G| ≤ e4 + e3, it is sufficient to prove that d ≤ 

e2. Let us state some basic concepts introduced by S. Jenson. If y,�∈�

Irr(G), then � dominates  if  y = (1)y. It is known that solvable groups 
have a nontrivial, abelian normal subgroup.

Theorem 2
Let G be a Frobenius complement that is a Z-group. If p is a prime 
that divides |G|, then G has a unique subgroup of order p.

Proof:
It is known that p divides only one of |G| or |G : G|. If p divides |G|, then 
since G is cyclic, then G has a unique subgroup of order p. Since p 
does not divide |G : G| and G is normal in G, which shows that the 
unique subgroup of G having order p.

Let us suppose that p divides |G : G|. We know that G/G is cyclic, so 
there is a unique subgroup X/G having order p. It is knonw that X 
contains all the subgroups of G having order p, so it suffices to prove 
that X has a unique subgroup of order p. Let P be a subgroup of X 
having order p. Let Q be any subgroup of G having prime order, say 
|Q| = q. Then PQ is a subgroup of order pq, and by either Satz an 
application of the results due to, we �nd that PQ is cyclic. Hence, Q 
centralizes P. It follows that every subgroup of G of prime order 
centralizes P, and thus, CG(P) contains every subgroup of G having 
prime order. Since G is abelian and has order coprime to p, Fitting's 
theorem is applied so that G = [G, P]×CG(P). Since CG(P) contains all 
the subgroups of prime order, we obtain G = CG(P).

Theorem 3
Let G be a solvable Frobenius complement. If p is a prime divisor of 
|G| and P is a subgroup of G of order p, then either:

(i)  P is normal in G; or
(ii)  p = 3, 9 does not divide |G|, and a Sylow 2-subgroup of G is 
quaternion of order 8.

Proof
If p = 2, then the result is true by either Satz. Also, if |G| is odd, then it is 
true. Therefore, we may assume that |G| is even and p is odd. By a 
theorem of Zassenhaus G has a normal subgroup N so that N is a Z-
group and G/N is isomorphic to a subgroup of S4. Thus, if p > 3 or 9 
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divides |G|, then p divides |N|. Since subgroups of Frobenius 
complements are Frobenius complements, by suitable application 
of assertions of lemma (2.1.8), we �nd that P is characteristic in N, 
and so P is characteristic in G.

Thus, it may be assume that p = 3 and 9 does not divide |G|. Let H be a 
Hall 2-complement of G containing P. Thus, H is a Frobenius 
complement with odd order. Let Q be a Sylow 2-subgroup of G so 
that QP is a subgroup of G. Since P is a subgroup of H with prime 
order, P is normal in H. If P is central in PQ, then P is normal in G since 
G = HQ. Thus, P is not central in PQ, and so, the center of PQ is a 2-
group. It is know that either P is normal in PQ and hence G, or the 
Fitting subgroup of PQ is isomorphic to the quaternions. This implies 
that Q is quaternion of order 8. Hence, theorem is proved.
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