Original Research Paper

ABELIAN PROPERTIES OF SOLVABLE GROUPS AND ITS IRREDUCIBLE CHARACTER

Dr. Pankaj Kumar Chaudhary
Assistant Professor, Department of Mathematics, Women's Institute OfTechnology, L.N. Mithila University, Darbhanga.

Dr. Jawahar Lal Chaudhary
Associate Professor, University Department of Mathematics, L. N. Mithila University, Darbhanga.

Abstract

-Our main aim to obtain whether there exists any groups wheree4-e3<|G|<e4+e3. Also, there is no concreteproof that the such group cannot exist. From assumptions of theorem, it is know that if such a group does exist, then all the normal subgroups of G must be nonabelian. we examine whether the bound $|G| \leq e 4-e 3$ can be proved when G is a simple group. Durfee and Jensen proved that if G has a nontrivial, abelian normal sub-group, then G has a normal subgroup N so that (G, N) is ap-Gagola pair for some primep. Thus, if there exists a group G withe $4-e 3>|G|$, thend $>e 2$-e and all the nontrivial, normal subgroups of G are nonabelian.

KEYWORDS : Solvable group, Abelian, Nonabelian, Irreducible, Normal subgroup

INTRODUCTION

Let G be a finite nonabelian group d being the degree of some nonlinear irreducible character degree of G. we derive theorem when d is the maximal irreducible character degree of G.

It is known that d divides $|\mathrm{G}|$, so there is an integer e such that $|\mathrm{G}|=$ $d(d+e)$. Since $d^{2}<|G|$, where e is a positive integer. Berkovich has shown that $\mathrm{e}=1$ if and only if G is a 2-transitive Frobenius group. It is known that there are 2-transitive groups of arbitrarily large order, and so, d may be arbitrarily large. when e>1. But N. snyder has proved that $|\mathrm{G}| \leq(2 e)$! under the restriction $e>1$. He showed that if e $=2$, then $|G| \leq 8$ and if $e=3$, then $|G| \leq 54$, and in both of these cases, there exist examples of these orders; Thus the bounds given are best possible for $e=2$ and 3 . Isaacs has shown that $|G| \leq B e^{6}$ for some universal constant B and in many cases that $|G| \leq e^{6}+e^{4}$. Durfee and Jensen have proved that $|G| \leq e^{6}-e^{4}$ without application of non abelian simple group. When G is solvable and either e is a prime or e is divisible by at least two distinct primes, they prove that $|G| \leq e^{4}-$ e^{3}. Hence, the only possibility that G is solvable and $|G|>e^{4}-e^{3}$ is when e is a prime power that is not prime. We thus find that when $e=$ 2 and $e=3$, the expression $\mathrm{e}^{4}-\mathrm{e}^{3}$ yields the bound.

Isaacs has shown that there exists a solvable group G for every prime power q of $\operatorname{order}^{3}(q-1)$ where $d=q(q-1)$. In case $e q$, so $d=e^{2}-$ e and $|G|=e^{4}-e^{3}$. On the other hand, there are no known groups G where $|G|>e^{4}-e^{3}$, which implies that $|G| \leq e^{4}-e_{3}$ is the correct bound.

Gagola studied groups that have an irreducible character that vanish on all but two conjugacy classes. He proved that if G has a character $x \in \operatorname{lrr}(\mathrm{G})$ so that x vanishes on all but two conjugacy classes of G. x is called a Gagola character. Gagola proved that such Gagola characters are unique. Also, he proved that G has a unique minimal normal subgroup N. He proved that N is an elementary abelian p-group for some prime p. (G, N) is a p-Gagola pair if G has a Gagola character and N is the unique minimal normal subgroup of G and is a p -group.

Theorem 1

Let (G, N) be a p-Gagola pair some prime p. If P is a Sylow p-subgroup of G, then $d \leq e^{2}-e$ and $|N|^{2} \leq|P: N|=|G: N|_{p}$.

Proof:
There are three cases:-
(i) when p is odd. (ii) when $p=2$ and G is solvable, and for (iii) when p $=2$ and G is nonsolvable. we prove the case i) when $p=2$ and G is solvable. In particular, when $p=2$ and G is solvable, for which it is
desirable to derive properties of Suzuki 2-groups. The full automorphism group of a Suzuki 2-group is obtained. We prove it into there steps by taking its different values for p. Hence, theorem is proved.

Since $|G|=d(d+e)$, to prove $|G| \leq e 4-e 3$ it is sufficient to prove that $d \leq e 2-e$ and to prove $|G| \leq e 4+e 3$, it is sufficient to prove that $d \leq$ e2. Let us state some basic concepts introduced by S. Jenson. If ψ, \in $\operatorname{Irr}(\mathrm{G})$, then dominates if $\psi=(1) \psi$. It is known that solvable groups have a nontrivial, abelian normal subgroup.

Theorem 2

Let G be a Frobenius complement that is a Z-group. If p is a prime that divides $|G|$, then G has a unique subgroup of order p.

Proof:

It is known that p divides only one of |G| or |G: $\mathrm{G} \mid$. If p divides |G|, then since G is cyclic, then G has a unique subgroup of order p. Since p does not divide $|G: G|$ and G is normal in G, which shows that the unique subgroup of G having order p.

Let us suppose that p divides $|\mathrm{G}: \mathrm{G}|$. We know that G / G is cyclic, so there is a unique subgroup X / G having order p. It is knonw that X contains all the subgroups of G having order p, so it suffices to prove that X has a unique subgroup of order p. Let P be a subgroup of X having order p. Let Q be any subgroup of G having prime order, say $|\mathrm{Q}|=\mathrm{q}$. Then PQ is a subgroup of order pq, and by either Satz an application of the results due to, we find that PQ is cyclic. Hence, Q centralizes P. It follows that every subgroup of G of prime order centralizes P, and thus, $C G(P)$ contains every subgroup of G having prime order. Since G is abelian and has order coprime to p, Fitting's theorem is applied so that $G=[G, P] \times C G(P)$. Since $C G(P)$ contains all the subgroups of prime order, we obtain $G=C G(P)$.

Theorem 3

Let G be a solvable Frobenius complement. If p is a prime divisor of $|G|$ and P is a subgroup of G of order p, then either:
(i) P is normal in G ; or
(ii) $p=3,9$ does not divide $|G|$, and a Sylow 2-subgroup of G is quaternion of order 8.

Proof

If $p=2$, then the result is true by either Satz. Also, if $|G|$ is odd, then it is true. Therefore, we may assume that $|G|$ is even and p is odd. By a theorem of Zassenhaus G has a normal subgroup N so that N is a $Z-$ group and G / N is isomorphic to a subgroup of S4. Thus, if $p>3$ or 9
divides |G|, then p divides $|\mathrm{N}|$. Since subgroups of Frobenius complements are Frobenius complements, by suitable application of assertions of lemma (2.1.8), we find that P is characteristic in N, and so P is characteristic in G.

Thus, it may be assume that $\mathrm{p}=3$ and 9 does not divide |G|. Let H be a Hall 2-complement of G containing P. Thus, H is a Frobenius complement with odd order. Let Q be a Sylow 2-subgroup of G so that QP is a subgroup of G. Since P is a subgroup of H with prime order, P is normal in H . If P is central in PQ , then P is normal in G since $G=H Q$. Thus, P is not central in $P Q$, and so, the center of $P Q$ is a $2-$ group. It is know that either P is normal in $P Q$ and hence G, or the Fitting subgroup of PQ is isomorphic to the quaternions. This implies that Q is quaternion of order 8 . Hence, theorem is proved.

REFERENCES

1. LauAT, Amenability of semigroups, The analytical and topological theory of semigroups (eds) K H Hofman, JD Lawson and J S Pym (Berlin and New York:Walter de Gruyter) pp.331-334(1990)
2. F. Leinen and O. Puglisi, Unipotent finitary linear groups, J. London Math.So c.(2) 48(1),59-76(1993)
3. A.L.T. Paterson, Groupoids, inverse semigroups, and their operator algebras, Birkhauser, Boston (1999)
4. Ghaffari A, Convolution operators on semigroup algebras, Southeast Asian Bull. Math. 271-12(2003)
5. Vernikov B.M., Volkov M.V., Modular elements of the lattice of semigroup varieties II, Contributions to General Algebra, 17, pp. 173-190, Heyn, Klagenfurt (2006)
6. D. Haran, M. Jarden, and F. Pop, Projective group structures as absolute Galois structures with block approximation, Memoirs of AMS, 189, , 1-56(2007)
7. I. M. Isaacs, Bounding the order of a group with a large degree character, J. Algebra 348, 264-275(2011)
