
1. INTRODUCTION
Software Development Life Cycle (SDLC) may be an abstract model
employed in project management that describes the stages
concerned in a data system development project, from an initial
practice baleens study through maintenance of the �nished
application. Software system life cycle models organize varied tasks
of software system engineering into phases [11] [12]. A framework
that describes the activities performed at every stage of a software
system development project. Software system life cycle models
specify however these phases area unit to be dead as well as the way
within which these phases and tasks might restate and overlap [14].
In existing software system life cycle models, there are units many
problems that require being self-addressed, like to deal with and
handle continuous changes in necessities and follow step by step
method. As an example, water model follows Step by Step Process
so, change in requirements is not possible whereas all other models
(Prototype, RAD) do not follow step by step process.

2. SOFTWARE LIFE CYCLE
2.1 Software Development Life Cycle (SDLC)
Software Development Life Cycle (SDLC) methodology is a
formalized, standardized, documented set of activities used to
manage a system development project [4]. It is the process in which
you encapsulate your software development [13]. A framework that
describes the activities performed at each stage of a software
development [14]. SDLC is a standardized format for planning,
organizing, and running a new development project. Development
speed (time to market), Product quality, Project visibility, Risk
exposure depends upon on SDLC. Normally, a lifecycle model covers
the entire lifetime of a product.

2.2 Life Cycle Issues
Waterfall: Linear framework type. The waterfall model is a sequential
design process in which progress is seen as �owing steadily through
phases of requirements, analysis, design, construction, testing, deploy
and maintenance [11][13]. The model has no mechanism to handle
changes to the requirements that are identi�ed because of user
feedback.

Incremental: Combination of linear and iterative framework type. In
this model, phases out deliveries by increment. The �rst increment is
the core product of the system. Each further increment modi�es the
product to provide further functionality and features in system.
Incremental model combines the elements of the waterfall model
with the iterative philosophy of prototyping [11] [14]. When utilizing
a series of waterfalls for a small part of the system before moving
onto the next increment, there is usually a lack of overall consider-
ation of the business problem and technical requirements for the
overall system.

V Model: Veri�cation and Validation Phases. This model relates each
development phase to its associated testing phase. In this model,
work on the testing phases is carried out in parallel. All other
features are same as waterfall [5].

Prototype: Iterative framework type. The prototype model allows the
user to see the prototype of the system early [13]. The goal of
prototyping approach is to develop a little or pilot version referred
to as an example of half or all of a system. But incomplete or
inadequate problem analysis, resulting in current inefficient
practices being easily built into the new system; it do not follow step
by step process, Increases complexity of the overall system and Cost
expenses.

Rapid Application Development (RAD): Iterative framework type. This
uses minimal planning in favor of rapid prototyping. Each
application in a system is given to separate teams. But it is very
difficult to achieve consistency within and between applications
developed by the different teams [14].

Spiral: Combination of linear and iterative framework type. The
Spiral model is similar to the incremental model, with a lot of
emphases placed on risk analysis. The Spiral model has four phases:
Planning, Risk Analysis, Engineering, and Evaluation [11]. Risk
analysis requires highly speci�c expertise and project's success is
highly dependent on the risk analysis. No established controls for
moving from one cycle to another cycle. While not controls, every
cycle might generate a lot of work for consecutive cycle. No �rm

Our-Approach: A Novel Software Development Life Cycle Model

Md Ashif Habibi Assistant Professor, Department of CSE, WIT, LNMU, Darbhanga,
Bihar, India

Deependra Kumar
Jha

Assistant Professor, Department of CSE, WIT, LNMU, Darbhanga,
Bihar, India

Original Research Paper Computer Science

Volume : 3 | Issue : 11 | November 2014 • ISSN No 2277 - 8179Volume-6, Issue-1, January - 2017 • ISSN No 2277 - 8160 IF : 3.62 | IC Value 80.26

 GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS X 705

ABSTRACT Software Development Life Cycle is used to describe the period of time that starts with the software system being
conceptualized and ends with the software being discarded after usage. There are many life cycle models and each one

has its own merits and demerits. Unlike other life cycle models the waterfall model follows step by step process. So, change in requirements is not
possible when the requirement phase is �nished. Meanwhile, all other models do not follow step by step process. In order to address these issues, this
paper presents OUR-Approach methodology that aims to design software development life cycle which copes with and handle continuous
changes in requirements, follows step by step process, and deploys the product in a single iteration.

KEYWORDS : SDLC, Step by Step Process, Requirements, Single Iteration, Deploy, Software Development
Process

Gita Sinha Assistant Professor, Department of CSE, WIT, LNMU, Darbhanga,
Bihar, India

Amar Choudhary Assistant Professor, Department of Electronics Engineering, WIT,
LNMU, Darbhanga, Bihar, India

deadlines and cycles continue with no clear termination condition,
so there is an inherent risk of not meeting budget or schedule.

Rational Uni�ed Process (RUP): Iterative framework type, Uni�ed
Process. The team members need to be expert in their �eld to
develop software. The development process is too complex and
disorganized. Development can get out of control, cost expenses,
critical risk in the early stages, success of the project is not
guaranteed [11][13].

3. STEP BY STEP PROCESS
Regular Process �ows steadily through phases of Requirements,
Analysis, Design, Coding, Testing, Deploy, and Maintenance [2] [3].
Most Professional preferred way is to follow step by step processes
for successful project deploy. But step by step processes do not cope
with and handle continuous changes in requirements.

Figure 1. Step by Step Process

4. Our-Approach
Our-Approach methodology that aims to design SDLC which copes
with the continuous changes in requirements, follows step by step
processes, deploys the product in a single iteration and is possible to
upgrade existing software product. The major difference between
OUR-Approach and the Incremental model is that OUR-Approach
completes tasks in a single iteration and the Incremental model
completes tasks over a series of iterations to become the complete
system.

Figure 2. Our-Approach

Table 1

In Our-Approach, the time frame will be very short and so the
product can be delivered in a shorter time. Success of the project is
guaranteed with the advantage of step by step processes. Cost will
be very low because of single iteration. It is very simple to
implement. After every major stage, testing is done to check the
correctness so as to prevent a bug/error. Timing is very crucial in
software development; OUR-Approach will be tradeoffs between
the development time and the quality of the product. It would be
favored in projects where cost, schedule and quality are very
important.

5. Our-Approach FEATURES
Our-Approach features such as handles continuous changes in
requirements, iteration, understanding requirements, integrity,
time frame and cost, and probability are illustrated in Table 1 [7] [8]
[9] [10].

6. CONCLUSION
In this paper, I discuss a new way of SDLC: Our-Approach. Our-
Approach will be tradeoffs between the development time and the
quality of the product. Our-Approach would be favored in projects
where iteration should be single and cope with and handle changes
in requirements. It would be preferred in projects where Cost,
Quality, Schedule, Success is very important.

REFERENCES
A. M. Davis, H. Bersoff, E. R. Comer, “A Strategy for Comparing Alternative Software
Development Life Cycle Models”, Published in IEEE Transactions on Software
Engineering, 14(10):1453-1461, 1988
Horie, D.; Kasahara, T.; Goto, Y.; Jingde Cheng “A New Model of Software Life Cycle
Processes for Consistent Design, Development, Management, and Maintenance of
Secure Information Systems” Published in: International Conference on Computer
and Information Science, 2009.
Software Process Models. Ian Sommerville. Published in: ACM Computing Surveys,
28(1):269-271, 1996.
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/VModel_(software_development)
Jovanovich, D., Dogsa, T., “Comparison of software development models,” Published
in: 7th International Conference on Telecommunications, 2003.
Apoorva Mishra, Deepty Dubey, “A Comparative study of different software
development life cycle models in different scenarios” Published in: International
Journal of Advance Research in Computer Science and Management Studies, 2013
Maglyas, A.; Nikula, U.; Smolander, K.,”Comparison of two models of success
prediction in software development projects”, Software Engineering Conference
(CEE-SECR), 2010 6th Central and Eastern European on 13-15 Oct. 2010, pp. 43-49
Sanjana Taya, Shaveta Gupta, “Comparative Analysis of Software Development Life
Cycle Models”.
 Vishwas Massey, K.J Satao, “Comparing Various SDLC Models and The New Proposed
Model On The Basis Of Available Methodology”.
 Software Engineering - A Precise Approach, Pankaj jalote
 Software Engineering [Seventh Edition], Ian Sommerville.
 Software Requirements and Estimation, Swapna Kishore and Rajesh Naik
 Software Engineering - A Practitioner's Approach, Roger S.Pressman

Volume : 3 | Issue : 11 | November 2014 • ISSN No 2277 - 8179IF : 3.62 | IC Value 80.26 Volume-6, Issue-1, January - 2017 • ISSN No 2277 - 8160

1.

2.

3.

4.
5.
6.

7.

8.

9.

10.

11.
12.
1 3 .
14.

706 X GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS

