Sunt FOR RESERACE	Original Research Paper	Mathematics
Provide a state of the state of	αgδ-CLOSED SETS IN TOPOLOGICAL SPACE	
B. Meera Devi	Assistant Professor, PG and Research Departmen College, Sattur-626 203, Tamil Nadu, INDIA.	t of Mathematics, Sri S.R.N.M.
R.Vinitha	M.Phil Scholar, PG and Research Department of Ma Sattur-626 203, Tamil Nadu, INDIA.	athematics, Sri S.R.N.M.College,
ABSTRACT In this plies bet closed	paper a new class of sets, namely $\alpha g\delta$ -closed sets is introduced in top ween the class of δ -closed sets and the class of αg -closed sets. Also sets.	ological spaces. We prove that this class o we find some basic properties of αgδ-
KEYWORDS : generalized closed sets. δ-closure and δĝ-closed set.		

1 Introduction

Levine [5], Mashhour et al [8], Njastad [9] and Velicko [12] introduced semi-open sets, pre-open sets, α -open sets and δ -closed sets respectively. Levine [6] introduced generalized closed sets(briefly gclosed) sets and studied their properties. Bhattacharya and Lahiri [3], Arya and Nour [2], Maki et al [7] introduced semi-generalized closed (briefly sg-closed) sets, generalized semi-closed (briefly gs-closed) sets, generalized α -closed (briefly g α -closed) sets and α -generalized closed(briefly α g-closed) sets respectively. Veerakumar [13] introduced \hat{g} -closed sets in topological spaces. M. Lellis Thivagar, B. Meera Devi and E. Hatir [5] introduced $\delta \hat{g}$ -closed sets in topological spaces. The purpose of this paper is to define a new class of closed sets called $\alpha g\delta$ -closed sets and also we obtain some basic properties of $\alpha g\delta$ closed sets in topological spaces.

2 Preliminaries

Throughout this paper (X, τ) (or simply X) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of X, cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A respectively. Let us recall the following definitions, which are useful in the sequel.

Definition 2.1. A subset A of a space (X,τ) is called a (i) semi-open set [5] if $A \subseteq cl(int(A))$. (ii) pre-open set [8] if $A \subseteq int(cl(A))$. (iii) a-open set [9] if $A \subseteq int(cl(int(A)))$.

(iv) regular open set [10] if A = int(cl(A)).

The complement of a semi-open (resp. pre-open, α -open and regular open) set is called semi-closed (reps. pre-closed, α -closed and regular closed).

Definition 2.2. The δ -interior [12] of a subset A of X is the union of all regular open set of X contained in A and is denoted by $Int_{\delta}(A)$. The subset A is called δ -open [12] if $A = Int_{\delta}(A)$. The complement of a δ -open is called δ -closed. Alternatively, a set $A \subseteq (X,\tau)$ is called δ -closed [12] if $A = cl_{\delta}(A)$, where $cl_{\delta}(A) = \{x \in X : int(cl(U)) \cap A \neq \emptyset, U \in \tau \text{ and } x \in U\}$.

Definition 2.4. A subset A of (X, τ) is called

(i) generalized closed(briefly g-closed) set [6] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in $((X, \tau)$.

(ii) semi-generalized closed (briefly sg-closed) set [3] if scl(A) \subseteq U

whenever $A \subseteq U$ and U is semi-open set in (X, τ) .

(iii) generalized semi-closed (briefly gs-closed) set [2] if scl(A) \subseteq U whenever A \subseteq U and U is open set in (X, τ).

(iv) α -generalized closed (briefly α g-closed) set [7] if α cl(A \subseteq U whenever A \subseteq U and U is open set in (X, τ).

(v) generalized α -closed (briefly ga-closed) set [7] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open set in (X, τ) .

(vi) δ -generalized closed (briefly δ g-closed) set [4] if $cl\delta(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(vii) \hat{g} -closed set [11] if cl(A) $\subseteq U$ whenever A $\subseteq U$ and U is a semiopen set in (X, τ).

(viii) α - \hat{g} -closed (briefly $\alpha\hat{g}$ -closed) set [1] if α cl(A) \subseteq U whenever A \subseteq U and U is \hat{g} -open set in (X, τ).

(ix) $\delta \hat{g}\text{-closed}\,[4]\,if\,cl\delta(A) \subseteq U$ whenever $A \subseteq U$ and U is $\hat{g}\text{-open set}\,in$

(X,τ).

The complement of a g-closed (resp. sg-closed, gs-closed, ag-closed, α g-closed, β -closed, β -closed, α g-closed and δ g-closed) set is called g-open (reps. sg-open, gs-open, α g-open, β -open, β -open, α g-open, β -open, α g-open, β -open, β -open, α g-open, β -open, β -open,

Theorem 2.4. Every open set is α -open.

3 ago-Closed sets

We introduce the following definition.

Definition 3.1. A subset A of a space (X,τ) is called $\alpha g\delta$ -closed if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open set in (X,τ) .

Proposition 3.2. Every δ -closed set is $\alpha g\delta$ -closed set.

Proof. Let A be an δ -closed and U be any α -open containing A in (X,τ) . Since A is δ -closed, $cl_{\delta}(A) = A$ for every subset A of X. Therefore $cl_{\delta}(A) \subseteq U$ and hence A is $\alpha g\delta$ -closed set.

Remark 3.3. The converse of the above theorem is not true in general as shown in the following example.

Example 3.4. Let $X = \{a,b,c\}$ with topology $\tau = \{\emptyset, \{b\}, X\}$. Then the set $\{a,c\}$ is $\alpha g\delta$ -closed but not δ -closed in (X,τ) .

Proposition 3.5. Every $\alpha g\delta$ -closed set is g-closed.

Proof. Let A be an α g δ -closed and U be any open set containing A in (X,τ) . Since every open set is α -open and A is α g δ -closed, $cl_{\delta}(A) \subseteq U$ for every subset A of X. Since $cl(A) \subseteq cl_{\delta}(A) \subseteq U$, $cl(A) \subseteq U$ and hence A is g-closed.

Remark 3.6. An g-closed set need not be α g δ -closed set as shown in the following example.

Example 3.7. Let $X = \{a,b,c\}$ with topology $\tau = \{\emptyset, \{a\}, X\}$. Then the set $\{b\}$ is g-closed but not $\alpha g\delta$ -closed.

Proposition 3.8. Every αgδ-closed set is sg-closed.

Proof. Let A be an α g δ -closed and U be any open set containing A in (X,τ) . Since every open set is α -open, $cl_{\delta}(A) \subseteq U$ for every subset A of X. Since every open set is semi-open and $scl(A) \subseteq cl_{\delta}(A) \subseteq U$, $scl(A) \subseteq U$ and hence A is sg-closed.

Remark 3.9. A sg-closed set need not be α g δ -closed as shown in the following example.

Example 3.10. Let $X = \{a,b,c\}$ with topology $\tau = \{\emptyset, \{a\}, \{c\}, \{a,c\}, X\}$. Then the set $\{c\}$ is sg-closed but not α g δ -closed.

Proposition 3.11. Every αgδ-closed set is gs-closed.

Proof. It is true that $scl(A) \subseteq cl_{\delta}(A)$ for every subset A of X.

VOLUME-6, ISSUE-7, JULY-2017 • ISSN No 2277 - 8160

Remark 3.12. A gs-closed set need not be α g δ -closed as shown in the following example.

Example 3.13. Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, X\}$.

Then the set $\{a\}$ is gs-closed but not $\alpha g\delta$ -closed.

Proposition 3.14. Every αgδ-closed set is αg-closed.

Proof. It is true that $\alpha cl(A) \subseteq cl_{\delta}(A)$ for every subset A of X.

Remark 3.15. A α g-closed set need not be α g δ -closed as shown in the following example.

Example 3.16. Let $X = \{a,b,c\}$ with topology $\tau = \{\emptyset, \{c\}, \{a,c\}, X\}$. Then the set $\{b,c\}$ is αg -closed but not $\alpha g\delta$ -closed.

Proposition 3.17. Every α g δ -closed set is g α -closed.

Proof. Let A be an $\alpha g\delta$ -closed set and U be any open set containing A in (X,τ) . Since every open set is α -open, $cl_{\delta}(A) \subseteq U$ for every subset A of X. Since $\alpha cl(A) \subseteq cl_{\delta}(A) \subseteq U$, $\alpha cl(A) \subseteq U$ and hence A is $g\alpha$ -closed.

Remark 3.18. A ga-closed set need not be α g δ -closed as shown in the following example.

Example 3.19. Let $X = \{a,b,c\}$ with topology $\tau = \{\emptyset, \{a\}, \{a,b\}, \{a,c\}, X\}$. Then the set $\{c\}$ is ga-closed but not α g δ -closed.

Proposition 3.20. Every αgδ-closed is δg-closed.

Proof. Let A be an $\alpha g\delta$ -closed set and U be any open set containing A in (X,τ) . Since every open set is α -open, $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open. Therefore $cl_{\delta}(A) \subseteq U$ and U is open. Hence A is δg -closed.

Remark 3.21. A δg -closed set need not be $\alpha g \delta$ -closed as shown in the following example.

Example 3.22. Let $X = \{a,b,c\}$ with topology $\tau = \{\emptyset, \{c\}, X\}$. Then the set $\{a,c\}$ is δg -closed but not $\alpha g \delta$ -closed.

Remark 3.23. The class of $\alpha g\delta$ -closed sets is properly placed between the classes of δ -closed and αg -closed sets.

Proposition 3.24. Every αgδ-closed set is ĝ-closed.

Proof. Let A be an α g δ -closed and U be any open set containing A. Since A is α g δ -closed, cl_{δ}(A) \subseteq U for every subset A of X. Since every open set is semi-open and cl(A) \subseteq cl_{δ}(A) \subseteq U, cl(A) \subseteq U and hence A is \hat{g} -closed.

Remark 3.25. A \hat{g} -closed set need not be $\alpha g\delta$ -closed as shown in the following example.

Example 3.26. Let $X = \{a,b,c\}$ with topology $\tau = \{\emptyset, \{a\}, \{a,b\}, X\}$. Then the set $\{c\}$ is \hat{g} -closed but not $\alpha g\delta$ -closed.

Remark 3.27. The following example shows that α gô-closeness is independent from α ĝ-closeness, δ ĝ-closeness, α -closeness and semicloseness.

Example 3.28. Let $X = \{a,b,c\}$ with topology $\tau = \{\emptyset, \{a\}, \{b,c\}, X\}$. Then the set $\{a,c\}$ is $\alpha g\delta$ -closed but neither $\alpha \hat{g}$ -closed nor $\delta \hat{g}$ -closed and $\{b\}$ is $\alpha g\delta$ -closed but neither α -closed nor semi-closed.

Example 3.29. Let $X = \{a,b,c\}$ with topology $\tau = \{\emptyset, \{b\}, X\}$. Then the set $\{b,c\}$ is $\alpha\hat{g}$ -closed and $\delta\hat{g}$ -closed but not $\alpha g\delta$ -closed.

Also the another example, Let $X = \{a,b,c\}$ with topology $\tau = \{\emptyset, \{a\}, \{a,b\}, X\}$. Then the set $\{b\}$ is α -closed and semi-closed but not $\alpha g\delta$ -closed.

Remark 3.30. The following diagram shows that the relationships of $\alpha g\delta$ -closed sets with other known existing sets. A \rightarrow B represents A implies B but not conversely

Fig. 1

1. $\alpha g\delta$ -closed 2. δ -closed 3. δg -closed 4. \hat{g} -closed 5. g-closed 6. αg closed 7. gs-closed 8. sg-closed 9. $g\alpha$ -closed 10. $\alpha \hat{g}$ -closed 11. α closed 12. $\delta \hat{g}$ -closed 13. closed

4 Properties

Theorem 4.1. The finite union of $\alpha g\delta$ -closed sets is $\alpha g\delta$ -closed.

Proof. Let $\{A_i / i = 1, 2, ..., n\}$ be a finite class of α g δ -closed subsets of a space (X, τ) . Then for each α -open set U_i in X containing A_i , $cl_\delta(A_i) \subseteq U_i$, $i \in \{1, 2, ..., n\}$. Hence $\cup_i A_i \subseteq \cup_i U_i = V$. Since arbitrary union of α -open set in (X, τ) is also α -open set in (X, τ) . Also $\cup_i cl_\delta(A_i) = cl_\delta(\cup_i A_i) \subseteq V$. Therefore $\cup_i A_i$ is α g δ -closed in (X, τ) .

Remark 4.2. Intersection of any two $\alpha g\delta$ -closed sets in (X, τ) need not be $\alpha g\delta$ -closed as shown in the following example.

Example 4.3. Let $X = \{a,b,c,d\}$ with topology $\tau = \{\emptyset, \{a\}, \{b,c\}, X\}$. Then the sets $\{a,b,d\}$ and $\{b,c,d\}$ are $\alpha g\delta$ -closed sets but their intersection $\{b,d\}$ is not $\alpha g\delta$ -closed.

Proposition 4.4. Let A be an $\alpha g\delta$ -closed set of (X,τ) . Then $cl_{\delta}(A)$ -A does not contain a nonempty α -closed set.

Proof. Suppose that A is $\alpha g\delta$ -closed, let F be α -closed set contained in $cl_{\delta}(A)-A$. Now F^{c} is α -open set of (X,τ) such that $A \subseteq F^{c}$. Since A is $\alpha g\delta$ -closed set of (X,τ) , $cl_{\delta}(A) \subseteq F^{c}$. Thus $F \subseteq (cl_{\delta}(A))^{c}$. Also $F \subseteq (cl_{\delta}(A))^{c} \cap (cl_{\delta}(A)) = \emptyset$. Hence $F = \emptyset$.

Proposition 4.5. If A is α -open and α g δ -closed subset of (X, τ) , then A is an δ -closed subset of (X, τ) .

Proof. Since A is a-open and agd-closed, $cl_{\delta}(A) \ \subseteq A.$ Hence A is b-closed.

Theorem 4.6. The intersection of a $\alpha g\delta$ -closed set and a δ -closed set is always $\alpha g\delta$ -closed.

Proof. Let A be $\alpha g\delta$ -closed and let F be δ -closed. If U is an α -open set containing $A \cap F \subseteq U$, then $A \subseteq U \cup F^c$ and so $cl_{\delta}(A) \subseteq U \cup F^c$. Now $cl_{\delta}(A \cap F) \subseteq cl_{\delta}(A) \cap F \subseteq U$. Hence $A \cap F$ is $\alpha g\delta$ -closed.

Proposition 4.7. If A is an $\alpha g\delta$ -closed set in a space (X,τ) and $A \subseteq B \subseteq cl_{\delta}(A)$, then B is also a $\alpha g\delta$ -closed.

Proof. Let U be an α -open set of (X,τ) such that $B \subseteq U$. Then $A \subseteq U$. Since A is $\alpha g\delta$ -closed set, $cl_{\delta}(A) \subseteq U$. Also since $B \subseteq cl_{\delta}(A)$, $cl_{\delta}(B) \subseteq cl_{\delta}(cl_{\delta}(A)) = cl_{\delta}(A)$. Hence $cl_{\delta}(B) \subseteq U$. Therefore B is also a $\alpha g\delta$ -closed set.

Proposition 4.8. Let A be $\alpha g\delta$ -closed subset of (X,τ) . Then A is δ -closed iff $cl_{\delta}(A)$ -A is α -closed.

Proof. Necessity: Let A be a δ -closed subset of X. Then $cl(A)-A = \emptyset$ which is α -closed.

Sufficiency: Since A is $\alpha g\delta$ -closed, by proposition 4.4, $cl_{\delta}(A)$ -A does not contained a nonempty α -closed set. But $cl_{\delta}(A)$ -A = Ø. That is $cl_{\delta}(A)$ =A. Hence A is δ -closed.

References

Abd El-Monsef M.E, Rose Mary S and Lellis Thivagar M, On αĝ-closed sets in topological spaces, Assiut University Journal of Mathematics and Computer Science,

VOLUME-6, ISSUE-7, JULY-2017 • ISSN No 2277 - 8160

Vol 36(1), P-P.43-51(2007).

- Arya S.P. and Nour T, Characterizations of S-normal spaces, Indian J. Pure. Appl. Math., 21(8)(1990), 717-719. [2]
- Bhattacharya P and Lahiri B.K, Semi-generalized closed sets in topology, Indian J. Math., 29(1987), 375-382. [3]
- Leliis Thivagar M, Meera Devi B and Hatir E, õĝ-closed sets in topological spaces, Gen. Math. Notes, Vol. 1, No. 2(2010), 17-25, ISSN 2219-7184. Levine N, Semi-open sets and semi-continuity in topological spaces, Amer. Math. [4] [5]
- Monthly, 70(1963), 36-41. Levine N, Generalized closed sets in topology Rend. Circ. Mat. Palerno, 19(1970), 89-[6]
- 96 30. Maki H, Devi R and Balachandran K, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15(1994), 57-[7]
- 63. Mashhour A.S, Abd El-Monsef M.E and El-Debb S.N, On pre-continuous and weak pre-[8]
- Mashnour A.S., Aod El-Monser M.E and EL-Debo S.N., On pre-continuous and weak pre-continuous mappings, Proc. Math. and Phys. Soc. Egypt 55(1982), 47-53.
 Njastad O, On some classes of nearly open sets, Pacific J Math., 15(1965), 961-970.
 Stone M, Application of the theory of Boolian rings to general topology, Trans. Amer. Math. Soc., 41(1937), 374-481.
 Veerakumar M.K.R.S. ĝ-closed sets in topological spaces, Bull. Allah. Math. Soc, 19(20), 00, 112.
- [11] Vectorial interaction of protocol and interaction of protocol and pr