And the second

Original Research Paper

Environmental Science

MICROBIAL DIVERSITY ANALYSIS OF DAL LAKE, INDIA USING 16S RRNA GENE BASED CULTURING APPROACH.

Khan J.A

Department of Environmental Sciences, University of Pune, Pune, India

ABSTRACT Dal lake ecosystem (Lat. 340-6' N, 740-45'E, alt.1583) situated in the heart of Srinagar city the summer capital of Jammu and Kashmir state is under tremendous anthropogenic pressure for the last there decades. More than 50,000 people are living inside this hamlet, besides some people residing inside houseboats. People use this lake for their own purposes as this lake acts as livelihood for many families since centuries. Little work had been carried on Dal lake water and sediment samples to show the type of Microbial Diversity existing at present. By our work we tried to show whether anthropogenic activity is responsible for producing harmful bacteria. The traditional method of Microbial diversity analysis, culture dependent identification of species through morphological and biochemical test has not given the broad range of organism present in Dal Lake. Till date, only Escherichia coli, Salmonella typhimurium and Penicillium sp. were only identified. We have utilized 16S rRNA approach first time to study Microbial diversity in detail by taking water and sediment samples and had grown them on different media like Nutrient agar, Blood agar, and Eosine Methyline blue agar. As studies of 16S rRNA provides a microbial taxa present in a given sample because it is an excellent phylogenetic marker. Bacterial 16S rRNA sequences show the distribution of microorganisms predominantly in Bacillus, Acinetobacter and Pseudomonas species. As by our findings sediment samples show a variety of bacteria, whereas water samples showed presence of very few types of bacteria. The other bacteria recovered from the sediment samples include bacteria belonging to Sporosarcina, Streptomyces, Arthrobacter, Rhodococcus, Enterobacter, Hydrogenophaga, Rheinheimera, and Gammaproteobacterium species. The other isolate recovered from the water samples belong to the species Comamonas, Micrococcus, Rheinheimera, Acidovorax, Sporosarcina, Paenisporosarcina, Rhodococcus, Bosea, Arthrobacter. Based on literature survey, we can utilise the services of these bacteria for various purposes as these microorganisms can bring bioremediation activity in Dal lake such as degradation of crude oil, aromatic and alicyclic compounds, polynuclear aromatic hydrocarbons, mineral oils, synthetic polymers, styrene, heavy metals.

KEYWORDS:

Introduction:

The study of Microbial diversity is a basically characterization of microbial communities in nature. In the Microbial diversity analysis, one needed to discover, cultivate, isolate and characterize diverse microorganisms. It is estimated that ~99. 9% of the microbes available in nature are not cultivable by using orthodox culturing techniques available. As a consequence of this, the vast majority of microbes which could be used in the agriculture, pharmacology and industry are out of human reach. Thus, researchers are interested to know the importance of their biotechnological as well as phylogenetic and ecological significance. Because of their dominance of global biogeochemical cycles, microorganisms are essential to life and the functioning of the biosphere (Fonknechten et al. 2008). However, the ecological importance of microorganisms has historically been overlooked. Today, this notion is replaced with a growing appreciation for their paramount importance and biodiversity (Curtis and Sloan, 2005).

Microbiology is the study of microscopic size organism which includes bacteria, fungi, algae, protozoa, and viruses. It also includes their distribution in nature, relationship with each other and other living organisms, their effects on human beings and other animals and plants. There is no field of human endeavor, where the microbe does not play an important and dominant role. The only aspect of their myriad actions that gets highlighted is their potential to cause misery, disease and injury. On the other hand, microbes are involved in the making of curd, cheese, butter, and wine, in the production of antibiotics like penicillin, manufacture of organic acids, alcohols and processing of domestic and industrial wastes. Microbes also play important role in most geochemical cycles, the world's climate (uptake of CO2 in the Ocean), agriculture, human health, sustainable cities, reservoir for new drugs and metabolic processes(Griffith 1983). This enormous potential of different microbes is largely due to the degree of variation of life which is called Microbial diversity. Biodiversity on Earth is composed of three domains of life(Woese CR 1977). The three domains of life, Bacteria, Archaea and Eukaryotes, dominate life on our planet, as well as global biomass and carbon turnover (Whitman et al. 1998). Microbes are a large and diverse group of microscopic organisms that can live as single cells or in cell clusters. All bacteria and archaea are microbes, but domain Eukarya contains microbes as well as Fungi, Protozoa and microscopic Algae (Torsvik & Øvreås, 2011). The

domains, Archaea and Bacteria, are currently divided into several lineages, which constitute heterogeneous groups of species(Delong,2003).

Materials and Methods:

For Microbial Community Analysis cultured approach 16S rRNA gene based approach was used. Sample collection: samples were collected using sterile plastic bottles, and stored for few days and later used for further analysis. Each sample were labeled as follows prior culturing them into different microbial media for growth.

Sample A: Bodal sediment 2, Sample B: Gagribal sediment 1, Sample C: Bodal Basin-Water sample 2, Sample D: Gagribal basin-Water sample 1, Sample E: Mixture of A B C D

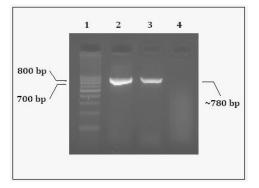
Cultured Microbial diversity of Dal lake

Samples were spread on Nutrient Agar, Blood Agar and EMB Agar for growth of microorganisms. The sample was either serially diluted or directly spread on plate for growth of microorganisms. The scheme of spread plate has been detailed in the tables below . Total plate count for each culture was performed by observing the plates after 24 and 48 hours of incubation at 37C0. Plates were photographed and number of colonies were counted from each plate, the results were recorded.

Total viable count (TVC): For the determination of the total microbial count of culturable microorganisms in the different samples were grown in different growth media.

- Nutrient Agar (NA): The 0. 1 ml inoculum was evenly spread over the entire surface of one of the nutrient agar plates until the medium no longer appears moist. Plates were incubated for 24-48 hours at 37C0 and bacteria were enumerated.
- **Blood Agar (BA):** The 0. 1 ml inoculum was evenly spread over the entire surface of one of the blood agar plates until the medium no longer appears moist. Plates were incubated for 24-48 hours at 37C0 and bacteria were enumerated.

VOLUME-6, ISSUE-7, JULY-2017 • ISSN No 2277 - 8160


 Ethyline Miosine Blue Agar (EMB): The 0. 1 ml inoculum was evenly spread over the entire surface of one of the EMB agar plates until the medium no longer appears moist. Plates were incubated for 24-48 hours at 37 C0 and bacteria were enumerated.

Characteristics of colonies

Characteristics of colonies showing different morphological features as per visual observations were recorded.

Preparation of genomic DNA from pure cultures

Each single colony was picked up using sterile pipette tip and suspended in 100 L, sterile rapid microbial DNA preparation solution (0. 1% Triton X-100 in Tris EDTA buffer; pH 8. 2). The colony suspension was then boiled at 99 C0 for 20 min in thermal cycler. The lysate after boiling was centrifuged at 10000 RPM for 10 minutes. SmicroL of the supernatant was used as template DNA for 16S rRNA amplification.

Representative data for PCR amplification:

Agarose gel electrophoresis of 16SrRNA gene PCR products prepared from the culture sample of the Dal lake. Lane 1: 100bpLadder; Lane 2: PCR amplicons from colony;Lane3: Positive control colony PCR amplicon;Lane4: Negative control

Polymerase chain reaction of 16S rRNA

Polymerase chain reaction based amplification of 16S rRNA gene was carried out using geneOmbio Microbial Identification kit. The kit comprises of a primer sets targeting16S rRNA from bacteria. Amplicon of 780 bp is generated by PCR amplification of 16S rRNA gene of bacteria. The PCR amplification reaction mix of 50 l contained bacterial DNA, 11 (5 units) Taq-DNA polymerase, 5 l of 10X PCR buffer 1 l of 10 mM dNTP mix and 2 l of each primer (10 pM/ l). Amplification was carried out in a GeneAmp PCR System (Applied Biosystems, USA). In all the reactions, sterile water was used in place of DNA as a negative control. The thermal cycling program was: 94°C for 2 minutes, 94 °C for 1 minute, 55 °C for 1 minute, 72 °C for 1 minute for 30 cycles and final extension of 72 °C for 1 minutes. The amplified DNA fragments of 780bp separated on a 2% agarose gel and purified by using geneOmbio PCR purification Kit (geneOmbio Technologies, Pune).

BLAST analysis 16S rRNA sequences were analyzed using BLAST analysis at National Centre for Biological Information (NCBI) online tool located at <u>www.HYPERLINK"http://www.blast/"blast.ncbi.nlm.</u> nih. gov/. The results of the analysis were recorded as identification of the organism.

Colony Forming Units Four accessible surface sites within the Dal lake were studied for the Total microbial count (Table 1). Using the culture-dependent technique of dilution plating, a wide range of CFU/ml values were observed for the samples. The Dal lake sites CFU data showed that for all media, the values range from 0 to 180×104 CFUs/ml of sample. The bacterial number of sediment samples (Bodal and Gagribal basin) showed higher microbial load (CFU/ml) than the water samples (Bodal and Gagribal) on all the three principal media i. e. Nutrient agar, Blood agar and Eosin Methylene blue. Of the 4 sites, water sample sites showed <1×104 CFUs/ml while sediment samples showed 4×104 CFUs/ml. Among sediment samples, Bodal sediment 2 sample represented higher microbial count on NA and BA then the Gagribal sediment 1 sample. Gagribal showed significantly higher number of CFU on EMB (Eosin Methylene Blue) agar plate which indicated the presence of a high number of Gram-negative bacteria in the sample. Water sample of Bodal basin showed 6500 CFU/ml on blood agar while a very less number of colonies were grown on NA(560 CFU/ml) and EMB(20 CFU/ml) plates. Gagribal basin showed 2000 CFU/ml microbial count when grown on nutrient agar plate while on BA and EMB agar plate only 830 and 80 CFU/ml, respectively. Mixture of sediment and water samples when plated for the microbial load count, with 55000 CFU/ml>

Table 1. Total microbial count o	f water and sediment samples:
Total microbial count (TVC),	CFU/ml as determined by total
viable count (TVC)	

Sample	Plate Code	NA	BA	EMB
Bodal sediment 2	A	120×104		0. 85×104
Gagribal sediment 1	В	7. 40×104	9.0×104	2. 4×104
Bodal Basin- Water sample 2	С	0.056×104	0.65×104	0. 002×104
Gagribal basin- Water sample 1	D	0.20×104		0. 008×104
Mixture of A B C D	E	5.50×104	1.8×104	3. 7×104

Morphological characterization of colonies The growing colonies were analyzed for various morphological parameters such as color, shape, size, margin, consistency, transparency and elevation. Most of the colonies were white in color, circular in shape, 1-3 mm in size with entire margin, moist consistency, opaque transparency and Umbonate/Raised/Flat or crateri form of elevation. The detailed morphological characterizations were presented in Table 2. Photographs of various plates with each sample were shown in plate pictures below

EMB agar Blood agar Nutrient agar Images plate A, Bodal Sediment 2

Images plate B, Gagribal sediment 1

Image plate C, Bodal Basin-Water sample spread

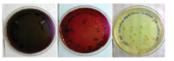


Image plate D, Gagribal basin- Water sample 1

Image Plate E, Mixture of Sample A, B

IF : 4.547 | IC Value 80.26

Table 2. Morphological characterization of bacterial colonies isolated from Dal lake water samples.

S No.	Colo ny No.	Med ia	Colo ur	Shape	Size			Transpa rency	Elevatic n
1	A1	BA	Whiti sh	Circula r	1 mm	Entire	Moist	Translu cent	Raised
2	A2	BA	Whiti sh	Circula r	4 mm	Entire	Dry	Opaque	Umbon ate
3	A3	BA	sh	Circula r				Opaque	Raised
4	A4	BA	sh	Circula r				Opaque	ate
5	A5		urles					Transpa rent	Raised
6	2A1	EMB	Pinki sh	Circula r	2 mm	Entire	Moist	Opaque	Flat
7	2A2	BA	Whiti sh	Circula r	4 mm	Entire	Moist	Translu cent	Crateifo rm
8	B1	BA	sh	Circula r			-	Opaque	Umbon ate
9	B2	BA	Grey	Circula r	5 mm	Entire	Moist	Opaque	Umbon ate
10	B3	BA	Whiti sh	Circula r	3 mm	Entire	Moist	Translu cent	Flat
11	B4	BA	Grey	Irregul ar	4 mm	Undul ate	Dry	Cloudy	Raised
12	B5	BA		Rhizoi d/Irreg ular		Filifor m	Dry	Cloudy	Convex
13	2B1	EMB	Whiti sh	Circula r	1 mm	Entire	Moist	Opaque	Umbor ate
14	2B2	EMB	Whiti sh	Circula r	2 mm	Entire	Moist	Cloudy	Convex
15	C1	BA	Grey	Irregul ar	3 mm	Undul ate	Moist	Opaque	Craterif orm
16	C2	BA	Whiti sh	Circula r	2 mm	Entire	Sticky	Transpa rent	Convex
17	C3	BA	Grey	Circula r	4 mm	Roug h	Moist	Opaque	Craterif orm
18	C4	BA	Whiti sh	Circula r	3 mm	Undul ate	Moist	Opaque	Umbor ate
19	C5	BA		Circula r	2 mm	lrregu lar	Moist	Opaque	Craterif orm
20	2C1	EMB	Pinki sh	lrregul ar	3 mm	Undul ate	Dry	Translu cent	Flat
21	2C2	EMB	Pinki sh	Circula r	3 mm	Undul ate	Moist	Translu cent	Flat
22	D1	BA	Grey	Circula r	7 mm	Entire	Sticky	Opaque	Umbon ate
23	D2	BA	Black ish	Circula r	5 mm	Entire	Sticky	Translu cent	Umbor ate
24	D3	BA	Black	Circula r	3 mm	Undul ate	Dry	Opaque	Flat
25	D4	BA	Gree nish	Circula r	7 mm		Dry	Opaque	Flat
26	D5	BA	Yello wish	Circula r	2 mm	Entire	Moist	Opaque	Raised
27	2D1	EMB	Pinki sh	Circula r	1 mm	Entire	Moist	lridesce nt	Raised
28	2D2	EMB	Pinki sh	Circula r	1 mm	Entire	Indece nt	Raised	Raised

VOLUME-6, ISSUE-7, JULY-2017 • ISSN No 2277 - 8160

 Table 3. Nearest neighbor of 16S rRNA isolate obtained from cultured diversity of Dal lake in summer season, 2011-12.

	-		Blast Hit	Gen Bank	Max.
Sample ID	Plate Code	Culture	υιαst ΠΙΙ	Gen Bank Accession	identity
	Coue	Coue		number	actury
D a al a l	•	A 1	De elle de la		070/
Bodal Sediment 2	A	A1	Bacillussubt ilis BaAP3	JQ/34//0	97%
Seamlent Z					
		A2	Bacilluscere	JQ311956	88%
			us AIMST		
			3ME9S		
		A3	Bacillusmeg	JQ660585	91%
			aterium		
			BVC2		
		A4	Bacillusmeg	JQ800443	96%
			aterium		
			Bacteria_17		
			9		
		A5	Thalassobac		80%
			illusdevoran		
			s AS11		
		2A1	Acinetobact	HQ180189	78%
			er tandoii		
			CCM 7199		
		2A2		Ehe6	91%
			adecarboxyl	JQ312039	
			ata AIMST		
Gagribal	В	B1	Bacillusthio	JF895487	96%
Sediment A			parans		
			KU23		
		B2	Bacillusmeg	HM480313	91%
			aterium		
			WIF19		
		B4	Bacillusnan	JQ689197	93%
			haiensis		
			C3PO3		
		2B1	Paenibacillu	HM355680	89%
			scineris		
			BAC1091		
		2B2	Acinetobact	EF103571	88%
			er sp. JB54		
Bodal Basin	С	C1	Bacilluspum	FJ743437	91%
Water			ilus VIT BP		
Sample 2					
		C2	Pseudomon	AB633201	97%
			assp. HKF-3		
		C3	Bacillusarya	JQ818352	90%
			bhattai		
			NIOF		
		C4	Pseudomon	JN228318	87%
			assp.		
			D65lp(2011		
)		
		C5		JX312616	97%
			milus M5		
		2C1	Pseudomon	D0518017	87%
			as		07.70
			anguillisept		
		262		EM001061	010/
		2C2	Pseudomon	FIVI991861	91%
			as anguillisept		
			ica, E141		
	1	I			

VOLUME-6, ISSUE-7, JULY-2017 • ISSN No 2277 - 8160

Gagribal Basin Water	D3	Bacilluspum ilus,	AM778180	85%
Sample 1	D4	Bacilluspum ilus S7	GU969592	96%
	2D1	Acinetobact er sp. SFI19	AM490040	87%
	2D2	Acinetobact er sp. EU60	JF681287	88%

Table 4. Nearest neighbor of 16S Rrna isolates obtained from cultured diversity of Dal lake in winter season, 2011-2012.

Sample ID	Plate Code	Culture Code	Closest Blast Hit	Percent Similarity
Bodal Sediment 2	A	A1	Acinetobacter sp. sw-6-1(2011)	99%
		A2	Bacillus sp. BMR2	94%
		A3	Sporosarcina sp. Eur1 9.8	95%
		A4	FXJ7. 104	92%
		A5	Rhodococcusmaa nshanensis GMC121	89%
		A6	Bacillus sp. NOB11	97%
		A7	Bacillusaquimaris PL29	73%
		A8	Streptomyces sp. 14CM003	93%
		A9	4 JDE-2009, isolate 4	94%
		A10	Acinetobacter Iwoffii G26	97%
		A11	Sporosarcina sp. TmT2-26	95%
		A12	Arthrobacteroxyd ans WA1-10	99%
		A13	Pseudomonasfluo rescens NBRC 15830	99%
		A14	Enterobacter cloacae C111	94%
		A15	Enterobacter cloacae Bi37	93%
Gagribal Sediment 1	В	B1	Pseudomonassp. D65lp	97%
		B2	Pseudomonassp. HKF-3	99%
		B3	Hydrogenophaga pseudoflava KS6	89%
		B4	Hydrogenophaga taeniospiralis C2PO1	83%
		B5	Gamma proteobacterium GPTSA100-22	80%
		B6	Rheinheimera taxanensis TSWCW2	85%
		B7	Pseudomonas anguilliseptica K1946	71%

IF : 4.547 | IC Value 80.26

B8	Brachybacterium sp. BA-142	94%
B9	Pseudomonassp. D65lp(2011)	99%
B10	Phenylobacterium sp. I_10-G7401D6	89%
B11	Rheinheimera sp. C3-4m	88%
B12	Rheinheimera sp. C3-4m	97%
B13	Hydrogenophaga sp. p3(2011)	99%
B14	Bacilluscereus NIOAD14	88%
B15	Pseudomonassp. BCBo5, EU140959	88%

Table 5. Bioremediation features of cultured microorganisms obtained from Dal lake.

Name of Organism	Phylum	Habitat	Properties	References
Acinetobac ter sp.	Proteoba cteria	Commonly occur in soil, water, or wastewater	recalcitrant aromatic and alicyclic compounds, as well as some	Hendrickx et al. 2003,Wang ZG et al. 2011, JOSHI & LEE. 1996, Panda and Sarkar, 2012.
Sporosarci na sp.	Firmicute s	Soil of Urumqi, China	Remediation of As(III)	Varenyam et al. 2012
Streptomy ces sp.	Actinoba cteria	Loktak lake, Manipur, India; soil ofprotecte d forest areas from the states of Assam and Tripura, India	Reduce Cr(VI), Lindane	Polti et al. 2010, Singh et al. 2006, Thakur et al. 2007, Salam and Das. 2012
Rhodococc us maanshan ensis	Actinoba cteria	Maanshan Mountain, Anhui Province, China Maanshan	Nitrate, adenine, aesculin, arbutin and Tweens 20, 60 and 80	
Bacillus aquimaris	Firmicute s	Tidal flat of the Yellow Sea in Korea; Yangtze River, China	Heavy metals	Zhang et al. 2014, Yoon et al. 2003

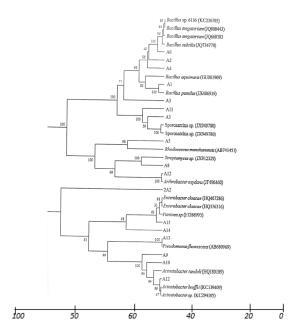
IF : 4.547 | IC Value 80.26

IF : 4.547 IC	Value 80.2	6		
Acinetobac ter lwoffii	Proteoba cteria	Lakes (HAAL) of the Aniline South	Cr(VI) reduction South American	-
Arthrobact er oxydans		lake in Antarctica	Hexavalent	Peng et al. 2012, Loveland- Curtze et al. 1999
Pseudomo nas fluorescens	Proteoba cteria	Eastern and southeaster Sicily (Italy)	Degrading styrene, TNT, polycyclic aromatic hydrocarbons; antiphytopathog enic and biocontrol properties, produces phloroglucinol, phloroglucinol carboxylic acid and diacetylphlorogl ucinol	Noura et al. 2009
Enterobact er cloacae	Proteoba cteria		Se(VI) Reduction and the precipitation of Se(0)	Yee et al. 2007
Pseudomo nas sp.	Proteoba cteria		Degrade polycyclic aromatic hydrocarbons, reduced Cu and Ni	Kumar et al. 2010
Hydrogeno phaga pseudoflav a	Proteoba cteria	Lake, Signy Island,	oxidizing bacteria	Willems et al. 1989
Hydrogeno phaga taeniospira lis	Proteoba cteria	Lake, Signy Island, Antarctica;	polychlorinated	Willems et al. 1989, Lambo and Patel, 2006

	VOLU	ME-6, ISSUE-7	7, JULY-2017 • ISSN	No 2277 - 8160
Rheinheim era taxanensis		Spring Lake, San Marcos, Texas; Sulfidic water (Movile Cave, Romania)	Sulphur reduction	Bhattacharya and Chakrabarti, 2009; Merchant et al. 2007
Acinetobac ter calcoacetic us	Proteoba cteria	Human body normal flora	Crude oil degradation	Lal and Khanna, 1996
Pseudomo nas stutzer		spinal fluid	carbon tetrachloride, degrade Crude oil, oil derivatives, and	Grüntzig et al. 2001, Sepulveda- Torres et al. 1999, Grimberg et al. 1996, Liao et al. 2010, Lalucat et al. 2006
Bacillus niacini	Firmicute s	Republic of	metabolizing, nitrate	Nagel &Andreesen, 1991; Pakpitcharoen et al. 2008; Clare et al. 2012
Paenisporo sarcina macmurdo ensis	Firmicute s	Pindari glacier McMurdo Dry Valleys, Antarctica	Bioremediation of crude oil	Krishnamurthi et al. 2009;Reddy et al. 2003
Rhodococc us equi	Actinoba cteria		Hexadecane degradation,bior emediation of crude oil; degrade ethyl tert-butyl ether	Bouchez- Naïtali et al. 2001, Cho et al. 1999 Fayolle et al. 1998 Samanta et al. 2002
Pseudomo nas putida	cteria	Moist soil and water habitats activated sludge from an aerobic- anaerobic wastewater	Degrade Crude Petroleum including Naphthalene, phenanthrene and salicylate; Biodegradation of benzene, toluene, ethylbenzene, and o-xylene; Trichloroethylen e Degr adation, reduce chromate	Nwachukwu, 2001 Zylstra et al. 1989, Ackerley et al. 2004, Shim and Yang, 1999

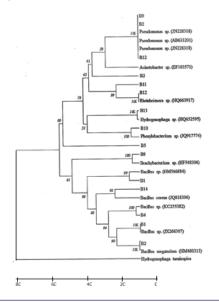
IF: 4.547 | IC Value 80.26

VOLUME-6,	ISSUE-7, J	ULY-2017 • ISS	N No 2277 - 8160	
Acidovorax sp.	Proteoba cteria	plant	Denitrifying	Heylen et al. 2008.
		(Bourgoyen- Ossemeerse n) in Gent, Belgium Churince system at Cuatro Ciénegas Basin (CCB) in the Mexican State of Coahuila; Uranim Ore Deposit of Domiasiat,N orth East India		
		Uranim Ore		Toribio et al.
nas koreensis	cteria	Domiasiat,N orth East India	biosurfactant, degradation of the polyethylene	2011,Yoonet al. 2012,Kumaret al. 2013.
Serratia rubidaea	Proteoba cteria	Clinical samples	Produce biosurfactants	Matsuyamaet al. 1990
Bacillus subtilis	es	India	hydrocarbons; convert some explosives into harmless compounds of N, CO2, and water; radionuclide waste [thorium] and plutonium] disposal	Joshi et al. 2008
Bacillus cereus	Firmicut es	Chennai, India, Lake	remediation of mercury, degradation of phenol, Chromium remediation	Santos- Gandelman et al. 2014, Gayathri et al. 2010,Nobuyu ki et al. 2003.
Bacillus megateriu m	Firmicut es	,	Remediation of Nitrate , Cr6+ biodegradation of crude oil	Cheung et al. 2005, Thavasi et al. 2011
Thalassoba cillus devorans	Firmicut es	Hypersaline habitats of southern Spain	phenol- degradation	García et al. 2005
Bacillus thioparans	Firmicut es	Estero de Urías coastal lagoon near Mazatlán, Sinaloa, México	bacterium	Rodríguez- Tiradoa et al. 2012; Pérez- Ibarra et al. 2007
Bacillus nanhaiensi s		Naozhou Island, the South China Sea	Yet not known	Chen et al. 2011.

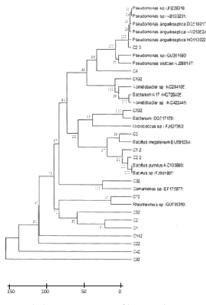

Paenibacillu s cineris	Firmicutes	Antarctic volcanic soils	Nitrogen fixation	Logan et al. 2004
Bacilluspumi lus	Firmicutes	Cochin, West coast of India	of antifungal	Parvathi et al. 2009.
Bacillus aryabhattai	Firmicutes		Zinc solubilizing abilities, Cr3+, removal of hexavalent chromium	Ray et al. 2012, Verma et al. 2014, Ramesha et al. 2014
Acinetobact er tandoii	Proteobact eria	Victoria, Australia	Avermectin biodegradati on	Carr et al. 2003
Leclercia adecarboxyl ata	Proteobact eria	Digboi oil refinery, India; fallow land, botanical garden of the University of Ilorin, Nigeria.	Hydrocarbon -degrading capability	David et al. 2014
Pseudomon as anguillisepti ca	Proteobact eria	Shizuoka Prefecture, Japan; filling stations in Biharkereszt es and Zalaegersze g and, in Ópusztaszer, Hungari	Hydrocarbon -degradation	

Phylogenetic relationships of taxa

Evolutionary processes in large populations of bacteria are not well understood at present. Phylogenies are a fundamental tool for organizing biological diversity. A phylogenetic tree, also known as a phylogeny, is a diagram that depicts the lines of evolutionary descent of different species, organisms, or genes from a common ancestor(Xia X, Xie Z,2001). The fine structure of phylogenetic trees can provide useful information about evolution and functional specialization in natural microbial populations. Phylogenies are useful for organizing knowledge of biological diversity, for structuring classifications, and for providing insight into events that occurred during evolution. Tree diagrams have been used in evolutionary biology since the time of Charles Darwin. Therefore, one might assume that, by now, most scientists would be exceedingly comfortable with "tree thinking"--reading and interpreting phylogenies(Yee N, Ma J, 2007).


As one of the aim of this study was to determine the biodiversity and community structure within sediments and water samples of Dal lake. Clone libraries were chosen as it provides useful data for further analysis of the Dal lake environment (Wayne LG 1987). The isolates in some phylogenetic group showed a similar distribution between water and sediment sample of Dal lake(Widdel F, 1982). The community structure in sample D was comparatively more complex than the sample A, B,C and E.

An isolate designated 2A2 branched deeply within Enterobacter, Pseudomonas and Acinetobacter genus, could not be assigned a single phylogenetic group and appears to represent a novel lineage. Phylogenetic analysis showed that A1, A2, A4 and A6 were related to the remediation of hydrocarbons, radionuclide waste, Cr6+, chromium and nitrate, crude oil and degradation of phenol as shown in bioremediation table earlier. A5 was most similar to Rhodococcus maanshanensis(89% similarity) by BLAST search. A1, A3, A8, A12, A13 were most similar to Bacillus pumilus,Sporosarcina sp. ,Streptomycessp. Arthrobacter oxydans,and Pseudononas fluorescence, respectively. This relationship is also supported by a 100% bootstrap value in the phylogenetic tree. The selenium is an essential micronutrient, the higher valence states of Se(VI) and Se(IV) are toxic at elevated concentrations and can cause severe poisoning of fish and waterfowl in contaminated environments. Enterobacter cloacae cause reduction of soluble selenate [Se(VI), SeO42-] toxic Se(0) converts selenium into an insoluble mineral form (Yee et al. 2007).


Figure 1. Phylogenetic tree of bacterial 16SrRNA half reaction of isolates derived from the Dal Lake Sample, Bodal sediment 2. The GenBank accession codes are given Bootstrap values at branch node also given.

Analysis of Sample B using larger data set which included many known bacterial divisions and candidate divisions suggested it was distantly allied with the Hydrogenophage taeniospira division (Figure 2)

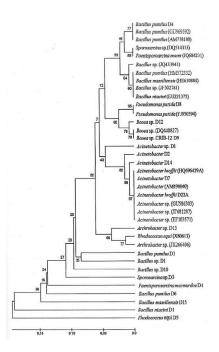


Figure 2: Phylogenetic tree of bacterial 16SrRNA clones derived from the Dal Lake cultured sample, Gagribal sediment1 The GenBank accession codes are given in parentheses. Bootstrap values are presented at branch node.

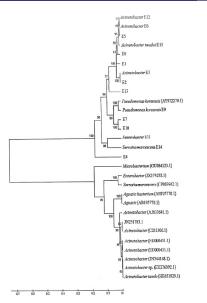

In Sample C, another group of phylotypes (C1, C2, C22, C42, C82, C92 and C112) forms another distinct deep branching cluster (Figure 3).

Figure 3. Phylogenetic tree of bacterial 16SrRNA clones derived from the Dal Lake cultured diversity Bodal Basin Water Sample. The GenBank accession codes were given in parentheses. Bootstrap values are presented at branch node.

Figure 4. Phylogenetic tree of bacterial 16SrRNA clones derived from Dal Lake cultured Gagribal basin – Water sample . Bootstrap values are presented at Branch node.

Figure 5. Phylogenetic tree of bacterial 16SrRNA clones derived from amixture of cultured samples from Dal Lake . The sample contains Bodal Sediment 2, Gagribal sediment , Bodal Basin – Water sample 2, Gagribal basin- water sample 1. The GenBank accession codes are given. Bootstrap values are given at branch node.

Pervious work done for Microbial diversity in Dal lake:

The literature survey showed very limited study carried out on Dal lake for the Microbial diversity analysis. The few reported methods have utilized culture dependent approach to describe microbial community in Dal lake. Saleem et al. (2011) has reported the most dominant bacterial species in Dal lake were E. coli (15. 77%) >E. aerogenes (12. 19%) >Bacillus sp. (11. 96%) >S. aureus (10. 85%) >M. luteus (10. 17%) >P. aeruginosa (8. 27%) >K. pneumoniae (6. 71%) >V. cholerae (6. 59%) >Salmonella sp. (6. 15%) >S. marcesens (5. 92%) >C. freundii (5. 59%). They have also isolated total 213 fungal colonies, from which six species of Penicillium viz, P. caseicolum, P. commune,P. chrysogenum, P. funiculosum, P. lilacinum,

Penicillium sp. and six species of Aspergillus viz, A. flavus, A. fumigatus, A. japonicas, A.terreus, A.niger and Aspergillus spp. Were selectively isolated.Out of these species, they found P. chrysogenum was the most abundant (30.99%) followed by P. funiculosum (16.43%) > A.fumigatus(14.09%)>A.niger(13.15%)>A.flavus(9.39%)>A.terreus(3.76%)>P.lilacinum(3.27%)>P.caseicolum(2.82%)>P.commune(2.35 %>A.japonicas(1.88%)> Penicillium sp. And Aspergillus sp.(0.94%). In another study, a bacterium sedignated BzDSO3 was isolated from water sample and characterized by using 16S rRNA gene and 16S- 23S rRNA internal transcribed spacer region sequences.Phylogenetic analysis showed 99% 16S rRNA gene sequence(Gene bank accession # FJ961336) similarity with Escherichia coli (Magray et al.2011). However, this study has not described other possible species in the Dal lake. Thus it was clear that Dallake needed to study at 16 Sr RNA level.

Conclusion

This research work first time highlighted the type of Microbial Diversity of Dal Lake. There were little work done in the past related exploration of Microbial diversity but we used 16 S rRNA approach for both sediment and water samples choosing almost hundred isolates. We further tried to explore how we can utilize their services for the mankind. We found bacterial diversity which resembled Microbial diversity found all over the globe. And in the future we will try to explore the importance of those bacterial isolates which shows least resemblance with the information present in the Gene

bank.

Acknowledgement

We thank Department of Environmental Sciences, University of Pune, Ganeshkhid -411007.All teaching and non teaching staff helped tirelessly to make this work possible.Special thanks to our Head Dr. karmalkar, my Guide and co guide for their continuous dedicated support throughout the completion of this work. Sincere special regards to Director National Centre for Cell Science, for allowing use of their labware continuously till completion of this work.

Authors contribution

Conceived and designed the experiments, executed the experiments. Analysed the data.Reagants were used taking permission from Director and Co guide from National Centre for Cell Science Pune, and some kits were used from Geneom Bio Pune.

References:

- Whitman WB, Coleman DC, Wiebe WJ.1998. Prokaryotes: The unseen majority. ProcNatl AcadSci USA.95(12):6578-83
- Torsvik VL, Ovreas L. 2011. DNA Reassociation yields Broad Scale information on Metagenome Complexity and Microbial Diversity. In : Handbook of Molecular Ecology I. John Wiley and sons, Inc., pp-3-16.
- Fonknechten, N, Chaussonnerie, S, et al. 2010. Clostridium sticklandii, a specialist in aminoacid degradation: revisiting its metabolism through its genome sequence, BMC Genomics 11:555-567.
- 4. Delong, E.F.2003. Oceans of archaea. American Society for Microbiology 69:503-511.
- Griffith. 1983. The importance of measuring Microbial enzymatic functions while assessing and preceding long term anthropogenic perturbations. Marine pollution Bulletin, 14, 162-165.
- Woese CR, Fox GE. 1977.Phylogenetic structure of the prokaryotic domain: the primary kingdoms. ProcNatLAcadsci USA 74: 5088-5090.
- Xia X, Xic Z. 2001. DAMBE: software package for data analysis in molecular biology. J Hered 92:371-373
- Wayne L G, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, et al. 1987. Report of the Ad Hoc Committee on Reconcilation of Approaches to Bacterial Systematics. International Journal of Systematic Bacteriology 37:463-464.
- Widdel F, P Fenning N. 1982. Studies on dissimilatory sulphate reducing bacteria that decompose fatty acids. Incomplete oxidation of propionate by Desulphobulbus propionicus gen. nov., sp. Nov.: Archives of Microbiology 131(4):360-365.
- Yee N, MaJ, Dalia A, Boonfueng T, Kobayashi DY. 2007. Se(vi)Reduction and the precipitation of Se(o) by the facultative bacterium Enterobacter cloacae SLD1a-1 are regulated by FNR. Appl. Environ Microbiology. 73(6): 1914-1920