
1. Introduction
Just like the regular graph in which each vertex is at distance 1 away 
from the same number of vertices, the graph in which each vertex is 
at distance 2 away from the same number of vertices is called 
semiregular graph. Some authors also de�ned the graphs in which 
the degree of each vertex is either r or r+1 are semiregular graphs [5]. 
In this paper, by n-semiregular graph we mean the graph in which 
each vertex is at distance 2 away from n number of vertices in that 
graph. Originally, the concept of semiregular graphs evolved from 
the combination graphs studied by Balaban [2] in the year 1972 and 
convolution graphs by Kerek [6] in the year 1974. In the year 2002, 
Alison Northup [1] de�ned the n-semiregular graphs and discussed 
an algorithm to construct an n-semiregular graph for a given integer 
n. The study of these graphs  have further got  momentum after the 
publication of papers “The distance degree regular graphs” by 
Bloom G.S etal [3] and “How to de�ne an irregular graph” by 
Chartrand etal [4].

In this paper, the n-semiregularity of some classical graphs have 
been discussed in detail. 
  
2. n-Semiregular Graphs
A simple graph G is said to be  n-semiregular graph if each vertex in 
G  has exactly n vertices  at distance 2 in G.. It is also called  (2,n) – 
regular graph. 

2.1 Examples
The graphs given in �g. 1 are examples of some n- semiregular 
graphs

Fig. 1 Some n-semiregular graphs 
All n-semiregular graphs are not regular. The graphs which are 
regular are denoted as   (r,2,n) – regular graphs i.e., each vertex in the 
graph is at a distance 1 away from exactly r vertices and at a distance 
2 from exactly n vertices. C. Sekar and N.R. Shanthimaheswari [7] 
have studied some properties of (r, 2, n)-regular graphs. An                
n-semiregular which is not regular is simply denoted as (2,n) regular 
graph

2.2 Examples
The graph given in �g.2 a is (3,2,3)-regular graph and �g.2 b is (2,3)-
regular graph 
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Fig 2 . a ( 3,2,3) – regular graph

Fig 2 . b     (2,3) – regular graph

The following theorem gives the necessary condition for a graph to 
be a n-semiregular.

 2.3 Theorem
Let G be a semiregular graph, and let u and v be any two vertices of 
deg m. If there is a vertex x of deg n adjacent to u then there is a 
vertex y of deg n, adjacent to the vertex v.

Proof

Let G be a semiregular graph. Let deg u = deg v = m. Also let x and y 
are vertices adjacent to u and v respectively such that deg  x = k and 
deg y = l where k ≠ l. For simplicity, �rst let us assume that deg u = 
deg v = 1. Then if deg x ≠ deg y, then the number of vertices which 
are at distance 2 for u and v will not be the same. It is a contradiction 
to the assumption that G is semiregular. Hence the theorem holds.

Next let us assume that deg u = deg v > 1, then the number of 
vertices which are at distance 2 to u through the vertex x is k. 
Similarly the number of vertices which are at distance two to v 
through y is l. Since k ≠ l, the number of vertices which are at distance 
two from u and v are not same. Again this is a contradiction. Hence 
the theorem.

The converse of the theorem 2.4 is not true; for example, consider 
the Grotsch's graph given in �g.3

Fig. 3

There are vertices of deg 3, deg 4 and deg 5. Also the number of 
vertices of deg 3, deg 4 and deg 5 are 5, 5, 1 respectively. 

Let αij denote the number adjacent vertices of deg j to the vertex of 
deg i. Then it can be found that α11= 0 ; α₁₂ = 2 ; α₁₃ = 1 ;    α₂₁ = 2 ; α₂₂ = 
2 ; α₂₃ = 0 ; α₃₁ = 5 ; α₃₂ = 0 ;   α₃₃ = 0 .

But the above graph is not semiregular.

2.4. Theorem
If  a graph G is semiregular then given any vertex u of deg m, the sum 
of degrees of adjacent vertices is a constant independent of the 
choice of u.

Proof
Let G be a semiregular graph. Let u and v are any two vertices in G 
such that        deg(u) = deg(v). From the above theorem, both the 
vertices u and v will have adjacent vertices of same degrees. Hence 
the sum of the degrees of adjacent vertices of u and v is a constant. 
Hence the theorem

2.5 Example
As an illustration to theorem 2.4, consider the 4-semiregular graph 
given in �g.1. The following table gives the sum of degrees of 
adjacent vertices of a given vertex of the  4-semiregular graph 

2.6. Theorem
A simple connected graph is 0-semiregular if and only if it is a 
complete graph.

Proof
Let G be a connected 0-semiregular. Then for all vertex u in G, there is 
no vertex v in G such that  d(u, v) = 2. Hence there is no vertex w in G 
such that d(u, w) > 2, otherwise, it would lead to a vertex at distance 
2 from u. Hence for all vertices u, v in G, d(u, v) <  2, i.e., d (u, v) is either 
0 or 1. d(u,v) = 0 is also not possible, if so, the vertices u and v 
disconnects the graph. This contradicts the fact that G is connected. 
Thus, for all vertices u and v in G, d(u, v) = 1. Hence G is a complete 
graph. 

Conversely, let G is complete. Then for all vertices u, v in G, d (u, v) = 1. 
Hence G is  0-semiregular.

From the following section it can be seen that an n-semiregular 
graph for any positive integer n can be constructed from a complete 
graph.

3. Construction of n-semiregular graphs
3.1 De�nition
The graph constructed from K2 by adding n pendent vertices each 
at both the vertices of K2 is called n-Barbell graph. It is denoted as k2 
+ n.

3.2 Theorem
 
The n-Barbell graph is n-semiregular 
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Vertices of 
deg 1

Adjacent vertices Sum of degrees of adjacent 
vertices

V₇ V₄ 5
V₈ V₆ 5
V₉ V₁ 5
V₁₀ V₃ 5

Vertices of deg 
2

Adjacent 
vertices

Sum of degrees of adjacent 
vertices

V₂ V₁ , V₄ 10
V₅ V₃ , V₆ 10

Vertices of deg 5 Adjacent vertices Sum of degrees of 
adjacent vertices

V₁ V₉ , V₂ , V₄ , V₆ , V₃ 18
V₃ V₁₀ , V₅ , V₆ , V₄ , V₁ 18
V₄ V₇ , V₂ , V₁ , V₃ , V₆ 18
V₆ V₈ , V₅ , V₃ , V₁ , V₄ 18
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 Proof
Let V(K₂) = {u,v}; Also let K₂ + n is the graph obtained by adding the 
pendent vertices w₁, w₂,…wn at u, and wn+1 ,…w₂n at v. The 
following table gives the vertices which are at distance 2 from the 
given vertex

Hence every vertex has exactly n vertices at distance 2. Therefore K2 
+ n is an n-semiregular graph. 

3.3 Examples
It can be easily seen that the 2, 3,4-Barbell graphs given in �g.4 are 
respectively 2,3,4-semiregular graphs.

2-semiregular graph

3-semiregular graph

4-semiregular graph
Fig.4     Barbell graphs

3.4 De�nition
Let Kn be a complete graph. The graph obtained from Kn by adding 
pendent vertices at each vertex of Kn is called as Kn + 1 graph.

3.5 Theorem
 graph Kn + 1 is (n-1)-semiregular.

Proof
Consider a complete graph Kn, with vertices u₁,u₂,… un. Add the 
pendent vertices v₁,v₂,… vn   respectively at u₁,u₂,… un. It can be 

seen that for every vertex u_i, the (n-1) vertices v₁,v₂,…v(i-
1),v(i+1),…  vn are at distance 2. Similarly for every vertex v_i, the (n-
1) vertices u₁,u₂,… u(i-1),u(i+1),… un are at distance 2. i.e., each 
vertex in Kn + 1 has exactly (n-1) vertices at distance 2. 

Hence Kn + 1 is (n-1)-semiregular.

3.6 Examples
The graphs given in Fig.5 and �g.6  are 2-semiregular and 3-
semiregular graphs constructed respectively from the complete 
graphs K₃ and K₄.

Fig. 5       3-semiregular graph  K₄ + 1

3.8 Theorem
For any bijection map                                    the graph               is (n-1)-
semiregular.  

Proof
Let  V(Kn  )= {u₁,u₂,… un }  and  V(Kn  )= {v₁,v₂,… vn }  . Let   f∶V(Kn  )   
V(Kn is bijective . Note that no vertex ui is at distance 2 to any vertex 
in Kn similarly no vertex  vi is at distance 2 to any vertex in Kn . Also 
for every vertex ui in Kn  there is exactly one vertex vi in Kn  is 
adjacent to ui, by means of an edge added with respect to the 
bijective map f. i.e., for each vertex ui except f(ui), all other vertices in  
Kn''  are at distance 2. The same argument is also applicable to all 
other vertices in Kn, and also all the vertices in Kn. Hence Kn •f  Kn''  is     
(n-1)-semiregular.

3.9 Example
The graphs given in �g.7 and �g.8 are K₃ f  K₃ and  K₄f  K4''  graphs 
obtained with respect to the bijection  f(ui )= vi respectively.

Fig. 7.  K₃f  K₃'' Graph
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Vertex Vertices which are at  distance 2
u wn+₁ ,…w₂n
v w1 , w₂ ,…wn

wi , i= ₁₂…n v, w₁ , w₂ ,…wi-₁ , wi+₁ ,…wn
wn+i ,i= ₁₂,…n u, wn+₁ ,…wn+i-₁ , wn+i+₁ ,…w₂n
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Fig. 8  K₄' •f  K₄''  Graph

4. Circulant Graphs

4.1 De�nition
Let r₁, r₂,…rk be the reduced residue system modulo m. A graph G 
with vertex set {v₀, v₁, v₂,…vm-1} in which vi is adjacent to vj if and 
only if i - j (mod m) = r.n , for some n satisfying 1 ≤ n ≤ k, is called 
circulant graph corresponding to the integer m. It is denoted as cir 
(m)

4.2 Observations
i. We know that the integer 1 is relatively prime to any integer m. 
Hence vi , vi+1 are always adjacent vertices in the circulant graph 
corresponding to the integer m.

ii. Also 0 and m-1 are always relatively prime implies that v0 and vm-
1 are always adjacent vertices. Hence v0, v1, . . . vm-1 form a cycle in 
the circulant graph cir(m).

iii. In a circulant graph any two vertices are either adjacent or at 
distance 2 

4.3 Theorem
The circulant graph cir(p), p is a prime is 0-semiregular.
Proof
Let p be a prime. The integers relatively prime to p are 1,2,3,…p-1. 
Let the vertex set be {v0, v1,v2,…vp-1}. Then for any two integers i,j 
satisfying 0 ≤ i , j ≤ p-1, i-j(mod p) = r Є{1,2,…p-1}. Hence every v¬i is 
adjacent to vj . i.e., the circulant graph cir(p) is a complete graph and 
hence it is 0-semiregular.

4.4  Examples
The circulant graphs cir(7), cir(8), cir(9) are given in �g. 9, �g. 10 and 
�g. 11

4.3 Theorem
The circulant graph cir(p), p is a prime is 0-semiregular.

Proof
Let p be a prime. The integers relatively prime to p are 1,2,3,…p-1. 
Let the vertex set be {v0, v1,v2,…vp-1}. Then for any two integers i,j 
satisfying 0 ≤ i , j ≤ p-1, i-j(mod p) = r Є{1,2,…p-1}. Hence every v¬i is 
adjacent to vj .

Fig.9 cir(7)

Fig. 10 cir(8)

 Fig.11 cir(9)
On generalization of the examples given above, we have the 
following theorems.

4.5 Theorem
Let  m be an odd integer, then the circulant graph cir(m) is -
semiregular, where  is the number of integers not relatively prime to 
m.

Proof
Let cir(m) be the circulant graph with v0, v1, . . . vm-1 as vertices. The 
theorem is trivially true for a prime odd integer, because the number 
of integers not relatively prime to a prime is zero i.e., �  =  0. Hence 
the cir(m) is 0-semiregular when m is prime. Therefore let m be a 
non-prime odd integer and r1 , r₂ , . . . rk are prime factors of m. Then 
the number of integers not relatively prime to m is   = ∑_(i=1)(m/ri - 
1). Hence the number of integers relatively prime to m is  (m--1), and 
let them be k1, k2, . . . km-α-1. As the difference between each of the 
integers k1, k2, . . . km-α-1 and 0 is relatively prime to m, then by 
de�nition of circulant graph  v0 is adjacent to v(k1,   ) v(k2,) . . . v(k(m--
1) ). Let s₁, s₂, . . . sα be the integers not relatively prime to m. Then       
v(s1 ), v(s2 ), . . . vs ) are not adjacent to v₀. Hence    v(s₁ ), v(s₂ ), . . . v(s ) 
are at distance 2 from v₀. i.e., there are α number of vertices at 
distance 2 from v₀.

It can be easily seen that the difference between  k₁+1, k₂+1, . . . km-
α-1+1 and 1 is the same as the difference between k₁, k₂, . . . km-α-1  
and 0. i.e., the difference is relatively prime to m. Here the 
summation is over mod m.

Hence v₁ is adjacent to the same number of vertices as v₀ and also v₁ 
has the same number of vertices at distance 2 as v₀. By proceeding in 
this manner, it can be found that, every vertex in cir(m) has same 
number of adjacent vertices and also same number of vertices at 
distance 2 as v₀. Hence cir(m) is -semiregular when m is an odd 
integer.

 4.6 Theorem
Let m be an even integer, then the circulant graph cir(m) is ((m-2)/2)-
semiregular.
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Proof
 It is clear that vi , vi+1 are always adjacent in a circulant 
graph cir(m), for any integer m. Suppose, if m is an even integer then 
vi and vj are at distance 2 to each other ,when   i – j is even integer. 
Hence if  v0, v1, . . . vm-1  are the vertices in cir(m), then v0, v2, . . . vm-
2 are at distance 2 to each other  and v1, v3, . . . vm-1 are also at 
distance 2 to each other. i.e., each vertex has exactly   ((m-2)/2) 
vertices at distance 2 in cir(m), when m is even. Hence cir(m), when 
m is even is  ((m-2)/2)-semiregular. Hence the theorem.   
 
5. Vertex Transitive Graphs

 5.1 De�nition
A graph G is vertex-transitive if for every pairs of vertices vi and vj in 
G there is an automorphism on G mapping vi to vj .
It can be easily seen that every one-one and onto mapping de�ned 
on the set of vertices of a complete graph to itself is an 
automorphism. Also, such an automorphism exists mapping any 
two vertices, being always adjacent to each other. Hence every 
complete graph is vertex transitive.

5.2 Theorem 
 Every cycle is vertex transitive
Proof 
 Let Cn be the cycle with vertex set      V= {v1,v2,. . . vn}. Consider the 

vertices vi and vj and let d(vi,vj) ≤ ⌊n/2⌋. Let m is an integer such that 

d(v_i,v_j )=m≤⌊n/2⌋. Let f be a mapping de�ned on V to itself such 
that f(u) = v if d(u,v) = m. In Cn, for every vertex u, there are always 
two vertices v1 and v2 such that    d(u,v1) = d(u,v2) = m. Hence 
choose any one arbitrarly, so that f is a one-one and onto mapping. 
Note that such a mapping always exists in Cn, for all n ≥3 

5.3 Theorem 
 A connected vertex-transitive graph is regular  

Proof 
 Let G be connected vertex-transitive graph, and vi ,vj ∈ V(G).Let f be 
an automorphism mapping vi to vj .If possible assume that |N(v(i 
))|=m and |N(v(j ))|=n and m≠n .Let e₁ , e₂ , … em are edges incident 
to vi and f₁ , f₂ , … fn are edges incident to vj . Also let m > n and 
ek'=(v_i,u_k) and ek''=(vj,wl) 

where k = 1,2, . . . m ; l = 1,2, . . . n.  Then for every (vi , uk ) , (f(vi) , f(uk)) = 
(vj , wl¬) for some l. Since m > n , all (vj , wl) cannot be different for all 
uk’s .Hence there exist integers k₁ , k₂ , . . . kt , where 1≤t≤m such that 
(f(vi) , f(uk₁)) = (f(vi) , f(uk₂)) = (f(vi) , f(uk₃)) = . . . = (vj , wl) for some �nite 
integer l. i.e., f(uk₁) = f(uk₂) = . . . = f(ukt) = wl. This contradicts the fact 
that f is one–one function. Next, let us assume that m < n. Thus there 
exist an integer k such that (f(vi) , f(uk)) = (vj , wl1) = (vj , wl2)) = . . . = (vj 
, wls)  i.e., f(uk) = wl1 = wl2 = . . . = wls.This is also a contradiction. 
Hence m = n is the only possibility. Therefore G is regular.

The converse of the above theorem is not true. In the literature, it is 
given that the Gray graph, an undirected cubic bipartite graph with 
54 vertices and 81 edges is of 3-regular but not vertex-transitive.

5.4 Theorem 
Every connected vertex-transitive graph is n-semiregular

Proof 
 Let G be a connected vertex–transitive graph. Let v₁ and v₂ are any 
two vertices in G. Also let there are n vertices u₁, u₂, …un in G such 
that d(v₁,ui) = 2.Then there are ‘n’ number of (v₁,ui)-paths each of 
length 2 in G. Let f be an automorphism on G mapping v₁ to v₂. There 
are n number of (v₂,f(ui))-paths, and of length 2. Hence, there are n 
vertices w₁,… wn such that f(ui) = wi , and all w’s are exactly two 
distance away from v2. i.e., there are exactly n vertices at distance 2 

from v2. Hence G is n-semiregular.
Combining theorem 5.2 and 5.4 and also from the earlier discussion, 
we have the following theorem.

5.5 Theorem
Every cycle is 2-semiregular, n ≥ 5.

6. Conclusion
In this attempt, some properties of semiregular graphs, and the 
semiregularity of certain classical graphs such as circulant graphs 
and vertex transitive graphs have been discussed. This attempt can 
also be extended to other well known graphs. 
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