
1. INTRODUCTION
General purpose GPU computing is de�ned as using graphic
processing units for non-graphical purpose. To program hybrid
devices, OpenCL is used. It is a non-proprietary standard and it can
be compiled and executed on any processor whereas Nvidia’s CUDA
is used to program on Nvidia’s GPUs only.

Before OpenCL, there was no famous architecture in the �eld of high
computing and graphics. CPU’s and GPU’s have different type of
programming models. To develop a uni�ed programming model for
heterogeneous platforms is a difficult task to achieve. The lack of a
standardized framework is a major obstacle in this �eld of
heterogeneous computing.

In heterogeneous programming, OpenCL emerged as a promising
framework. It is supported by all GPU vendors and provides a uni�ed
programming model for heterogeneous computing. Due to active
support for OpenCL from the vendors of CPU and GPU, OpenCL has
become the standard framework for CPU and GPU platforms. The
motivation of this work is to prove the achievability of OpenCL as a
standard framework for heterogeneous platforms. Moreover, the
performance of parallel sorting algorithms on heterogeneous
platforms is compared with the sequential sorting algorithms on
CPU.

The objective of this paper is to implement various sorting
algorithms in OpenCL. Sorting is a fundamental algorithmic
building block. The time taken by various parallel sorting algorithms
is compared with the time taken by various sequential sorting
algorithms running on the CPU. Here, we choose three different
algorithms with totally different nature of parallelism. The sorting
algorithm includes implementation of parallel selection sort,
parallel bitonic sort and parallel radix sort. The performance of these
sorting algorithms is analyzed and then it is compared with the
sequential sorting algorithms.

2. RELATED WORK
Since the late 1960s, parallel sorting has been a topic of study. In
1968, Batcher [1] has explained his work on network sorting and
describes comparison sorts which carry out individual comparisons
in parallel. After this, a large amount of work is done in the �eld of
parallel sorting algorithms. Batcher’s [1] work has been adapted by
Nassimi and Sahni [2]. This work describes parallel computers that
have mesh interconnect. Parallel merging techniques which are
used to sort datasets are developed by Francis and Mathieson [3].
Blelloch et al. [4] has presented work on several parallel sorting
algorithms including bitonic sort, radix sort and sample sort. This

work is similar to our work as it develops sorting algorithm to
efficiently utilize modern hardware. However, the difference is that
it does not target heterogeneous systems. The comparison of
performance of sorting algorithms is described by Amato [5].

Prior to the release of CUDA in 2007 [7] and OpenCL in 2008 [6],
GPU’s have been used to carry out parallel sorting operations. In
2005, Kipfer and Westermann [8] described sorting algorithms
implemented on GPU’s using a framework known as pug. This work
describes odd-even merge sorting and bitonic networks. In 2006,
the implementation of bitonic sort on the GPU devices has been
presented by Greb and Zachmann [9]. This work proves the time
complexity of O(nlogn).

After the release of CUDA framework, Harris et al. [10] explained an
algorithm for parallel radix sort which is based on the efficient
parallel pre�x sum algorithm. After this Harris et al. [11] developed
parallel radix sort and merge sort for NVIDIA GPU device. Leischner
et al. [12] has presented work on parallel sample sort for GPU
devices.

In 2008, OpenCL was released. Since, most of the functionality of
OpenCL is similar to CUDA; OpenCL versus CUDA is a frequently
mentioned topic in literature. Helluy [13] presents a portable
OpenCL implementation of radix sort algorithm where comparison
of radix sort on several platforms is done. In 2011, an analysis of
parallel and sequential sorting algorithms like bitonic sort, odd-
even sort and rank sort algorithms on different architectures are
presented by Gul and Khan [14] where task Parallelism is used.

3. OPENCL ARCHITECTURE
OpenCL is an open standard framework for programming on
heterogeneous platforms. It is a framework for parallel progra
mming. The main aim of OpenCL is to write a portable yet effective
code. The following hierarchy of models describe the OpenCL in
detail:

3.1 PLATFORM MODEL [6]
This model consists of a host device which is connected with the
OpenCL compliant devices. OpenCL device consists of many
compute units which are divided into processing elements.
Processing elements are responsible for performing computations
on a device. Host device executes the host application and it sends
commands to the processing elements which present in the GPU
devices for execution of the parallel code. Figure 1 explains the
platform model for OpenCL.

ANALYSIS OF VARIOUS SORTING ALGORITHMS IN OPENCL

Original Research Paper

With the availability of multi-core processors and graphics processing units in the market, heterogeneous
computing environment with the immense performance capability can be easily constructed. Heterogeneous

computing accelerates the performance by transferring the computation intensive code to the GPU and the remaining code runs in the CPU.
OpenCL is a standardized framework for the heterogeneous computing. Sorting algorithms are considered as fundamental building blocks
for algorithms and has many applications in computer science and technology. In this paper, we implement Selection Sort, Btonic Sort and
Radix Sort in OpenCL. The algorithms are designed to exploit the parallelism model available on multi-core GPUs with the help of OpenCL
speci�cation. In addition, the comparison between the traditional sequential sorting algorithms and parallel sorting algorithms are made on
the Intel ® Core™ i5-3317U CPU @ 1.70 GHz architecture and AMD Radeon HD 7600 M series GPU.

Tanvi Principal Author, Department of Computer Science, PGDAV(M) college University
of Delhi, New Delhi, India-110065

Volume : 3 | Issue : 11 | November 2014 • ISSN No 2277 - 8179IF : 4.547 | IC Value 80.26 VOLUME-6, ISSUE-6, JUNE-2017 • ISSN No 2277 - 8160

KEYWORDS : GPU, Selection Sort, Bitonic Sort, Radix Sort & OpenCL

ABSTRACT

Surgery

Shreshtha Sharma Corresponding Author, Analyst-Technology, Estee Advisors, Gurgaon, India

 X 137GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS

Figure 1. Platform Model for OpenCL

3.2 EXECUTION MODEL [6]
Execution of OpenCL program consists of two parts: Kernels and
host program. Kernels execute on OpenCL compliant devices and
host program executes on host. Host program is responsible for
de�ning the context for kernels and its management. The main task
of execution model is execution of kernels.

In OpenCL, tasks are known as kernels. Kernels are functions that are
sent to OpenCL complaint devices by host application and host
application is a regular C/C++ application program. Host
application manages devices with the help of context and context
act as a device container. Program is a kernel container from which
host selects a function to create a kernel. Kernel is dispatched to a
command queue. Through command queue, host tells devices what
to do. Figure 2 explains the Kernel distribution among devices.

Figure 2. Kernel distribution among OpenCL compliant devices
3.3 MEMORY MODEL [6]
In OpenCL, every kernel argument that references memory has an
address space modi�er. There are four address spaces. Global
memory stores data for entire GPU device. It is a read and write
memory. Constant is similar to global memory but it is a read only
memory. In local memory, data for all the work items in a work group
is stored in this memory. Private memory stores data for a particular
work item.

3.4 PROGRAMMING MODEL [6]
OpenCL supports data parallel and task parallel parallel program
ming models. Data parallel programming model is the primary
model for the design of the OpenCL. In a data parallel system, each
device receives the same instructions. But it operates on different
sets of data. Task parallel programming model allows different
devices to perform different tasks. Each task operates on different
data.

4. IMPLEMENTATION
In this section, various sorting algorithms are discussed and also
their implementation on the OpenCL framework has been
explained. The performance of these sorting algorithms is tested on
AMD Radeon HD 7600 M series GPU and Intel® Core™ i5-3317U CPU
@ 1.70 GHz architecture. After that performance of parallel sorting
algorithms implemented in OpenCL is compared with the

traditional sorting algorithms.

4.1 SELECTION SORT
Selection sort is a sequential algorithm. The implementation of
traditional selection sort is very simple. Firstly, it �nds out the
smallest element and then put it into its right position. This process
is to be repeated till all the elements are sorted out.

While implementing parallel selection sort, host device, sends the
unsorted array to the GPU devices and devices will sort the elements
in a parallel manner. Let N be the size of elements to be sorted. In
algorithm, we set the N work items and each work item will process
on the entire set of N elements in order to �nd out the exact position
of a particular element in the array. After completion of sorting, the
sorted array is sent back to the host device. The algorithm for the
parallel selection sort is de�ned in Figure 3.

4.2 BITONIC SORT
A monotonic sequence is a sequence in which all elements are
sorted in one direction i.e. the value increases (or decreases) from
left to right. If ak < ak+1 for all k < m then the sequence a1, a2,
a3.....am is considered as monotonically increasing. The sequence
which increases monotonically reaches a single maximum point
and after that monotonically decreases is known as a bitonic
sequence. Thus, the sequence becomes bitonic by cyclically shifting
the sequence.

In order to sort the elements using Bitonic Sorting, bitonic split
property is used. In bitonic split, if ak > ak+m/2 then the two
elements are exchanged, where 1 < k < m. After this step, two bitonic
sequences X and Y are produced such that all the elements present
in Y is greater than all the elements present in X. Bitonic sequence
can be converted into a monotonic sequence by performing bitonic
split repeatedly. In bitonic sort, total k steps are required to sort n
elements where n = 2k.

Bitonic Sort is a parallel sorting algorithm. While implementing
Bitonic Sort in OpenCL, host device sends the unsorted elements to
the GPU cores in the form of work groups which uses global size and
local size parameters. In work group, alternate work items perform
sorting in descending and ascending order respectively.

Figure 4 de�nes the algorithm for the Bitonic Sort in OpenCL. Let N
denotes the total number of elements present in an array. Then total
wok items will be set to N/2. Bitonic Sort kernel has �ve arguments
and all of them are stored in global memory. The K argument de�nes
the total number of steps required to sort an unsorted array and L
argument de�nes the sub-steps of each K. The direction argument
de�nes the direction in which sorting is performed i.e. ascending
order or descending order and the total number of elements to be
sorted is de�ned by width argument. Host program will call the L*K

IF : 4.547 | IC Value 80.26Volume : 3 | Issue : 11 | November 2014 • ISSN No 2277 - 8179VOLUME-6, ISSUE-6, JUNE-2017 • ISSN No 2277 - 8160

138 X GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS

kernels. After completion of sorting, the sorted array is moved back
to the host device and control goes to the host program.

Figure 4. Parallel Bitonic Sort Kernel
4.3 RADIX SORT
Radix sort is an efficient stable sort algorithm for sorting elements in
a list. It sorts the data by distributing each element in a bucket which
has the same value. After completion of each pass, the items are
collected and stored in order in an array. Then again the previous
step is repeated according to the next signi�cant digit. Radix sort
can be easily parallelized.

BIn Radix Sort, each element is between 0 and 2 -1 where B is the total
number of bits required to represent the keys. Total number of
passes p in the algorithm is represented by B/R, where R is the
number of bits which are required to represent the radix.

In our implementation, �rst step of each pass is to compute a
histogram. Here, we assume G groups, each group has I items.
Therefore, the total numbers of processors are GI. This part of an
algorithm is completely parallel. In this list of elements are
considered as a matrix with IG rows and N/IG columns which are
stored in a row-major order. Each row is processed by a single work
item. Firstly, transposition of matrix is calculated. It makes the matrix
in the column-major order. In the end, same step is repeated in order
to recover the sorted list of elements. Then the histogram is
calculated by computing the xth digit in the list. It basically identi�es
the least signi�cant digit.

In the second part of the pass, parallel pre�x sum is calculated for the
resultant array calculated from the previous step. Here, the array is
�rstly split into m parts and then they are separately scanned and
sum is stored in an auxiliary array. Finally, all the sums are combined
to obtain the global sum of the histogram array.

After the computation of pre�x sum, each item �nds its part on the
list and using the resultant array obtained from the previous steps, it
puts the keys at their right position.

Figure 5. Parallel Radix Sort Kernel
5. RESULTS
In this section, the results of sequential sorting algorithms and
parallel sorting algorithms on Intel® Core™ i5-3317U CPU @ 1.70 GHz

architecture and AMD Radeon HD 7600 M series GPU are compared.
Sorting time i.e. the time taken by an algorithm to sort the elements
is the metric of performance. The time taken by various sorting
algorithms in milliseconds is shown in table 1. On the basis of this
�gure, graphs are drawn between the time taken in milliseconds
and the input size which compares the traditional sequential
algorithms with the parallel sorting algorithms.

Table 1. Time Taken by sorting algorithms for different input
size

Figure 6 shows the comparison between the sequential selection
sort and the parallel selection sort. For small number of elements,
the performance of both the traditional algorithm and parallel
algorithms does not show noticeable difference. But for large
number of elements in an array, traditional selection sort is very slow
and ineffective whereas parallel selection sort is very effective and
provides high performance.

Figure 6. Comparison between Traditional Selection Sort and
Parallel Selection Sort

Figure 7 compares the traditional bitonic sort with the parallel
bitonic sort. The graph clearly shows the improvement in the
performance of the parallel bitonic sort especially for large
numbers.

Figure 7. Comparison between Traditional Bitonic Sort and Parallel

Volume : 3 | Issue : 11 | November 2014 • ISSN No 2277 - 8179IF : 4.547 | IC Value 80.26 VOLUME-6, ISSUE-6, JUNE-2017 • ISSN No 2277 - 8160

Sorting Time Time Time Time Time Time
Algorithm (in ms) (in ms) (in ms) (in ms) (in ms) (in ms)

for n for n for n for n for n for n
= 8192 = 16384 = 32768 = 65536 = 131072 = 262144

Sequential 297 1109 4407 16781 58281 274375

Selection
Sort

Parallel 1000 1031 1297 2407 6422 22844

Selection
Sort

Sequential 16 46 93 187 422 922
Bitonic Sort

Parallel 47 47 47 62 78 109
Bitonic Sort
Sequential 5062 5094 5266 5250 5859 5781
Radix Sort

Parallel 1172 1203 1219 1219 1265 1375
Radix Sort

 X 139GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS

Bitonic Sort

Figure 8 shows the comparison between the sequential radix sort
and the parallel radix sort. It can be clearly concluded from the
graph that the implementation of radix sort in OpenCL is very
effective and takes noticeable less time than the sequential radix
sort.

Figure 8. Comparison between Traditional Radix Sort and Parallel
Radix Sort

Now, from the above comparisons we can clearly say that since
selection sort is a sequential sorting algorithm and it does not
exploit the full processing capabilities of GPU takes maximum time.
Bitonic Sort is a parallel sorting algorithm. It takes minimum time in
both sequential and parallel implementation. Radix sort fully
utilizes the GPU and can easily be parallelized. Although it takes
more time than the bitonic sort but it shows noticeable improv
ement in the performance when implemented on GPU.

Also, it may be noted that for small n, there is not much difference
between the performance of the parallel sorting algorithms and
traditional sorting algorithms and even sometime traditional
sorting algorithms are better. This is because the cost of reading
data from the CPU and copying it to the GPU and after computing
the result, writing back data to the CPU from GPU is an inefficient
task. Therefore, for small n, sequential algorithms are more efficient
and for large n, optimized algorithms implemented in OpenCL are
more suitable and efficient.

6. CONCLUSIONS
In our paper, parallel sorting algorithms implemented on GPUs are
compared with their serial implementation on CPU. It can be
concluded that OpenCL provides a noticeable improvement in the
performance of various parallel algorithms as compared with the
traditional sorting algorithms. The results of our implementation on
AMD GPU are that the bitonic sort is fastest followed by radix sort
and selection sort. Also, it can be concluded that for small n,
sequential algorithms are more efficient and for large n, optimized
algorithms implemented in OpenCL are more suitable and efficient.

7. REFERENCES
[1] K. Batcher. Sorting networks and their applications. In AFIPS Spring Joint Computer

Conference, vol. 32, pages 307{314, 1968.
[2] D. Nassimi and S. Sahni. Bitonic Sort on a mesh-connected parallel computer.

Computers, IEEE Transactions on, C-28(1):2 {7, jan. 1979.
[3] R. Francis and I. Mathieson. A benchmark parallel sort for shared memory

multiprocessors. Computers, IEEE Transactions on, 37(12):1619 { 1626, dec 1988.
[4] G. Belloch, C. Leiserson, B. Maggs, C. Plaxton, S. Smith, and M. Zagha. A comparison of

sorting algorithms for the connection machine CM-2. pages 3{16, 1991.
[5] Nancy Amato, Ravishankar Iyer, Sharad Sundaresan, and Yan Wu. A comparison of

parallel sorting algorithms on different architectures. Technical report, College
Station, TX, USA, 1998.

[6] The OpenCL speci�cation, version: 1.0. http:// www.khronos.orf/ registry/
cl/specs/opencl-1.0.pdf, 2008.

[7] CUDA toolkit archive | NVIDIA developer zone. https:// developer. nvidia.com/ cuda-
toolkit-archive, 2012.

[8] P. Kipfer and R. Westermann. Improved GPU Sorting. In Matt Pharr, editor, GPU Gems
2, chapter46. Addison Wesley, March 2005.

[9] A. Greb and G. Zachmann. GPU-ABiSort: optimal parallel sorting on stream
architectures. In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.
20th International, page 10 pp., April 2006.

[10] M. Harris, S. Sengupta, and J. Owens. Parallel pre�x sum (scan) with CUDA. In Hubert
Nguyen, editor, GPU Gems 3, chapter 39, pages 851 {876. Addison Wesley, August

2007.
[11] N. Satish, M. Harris, and M. Garland. Designing efficient sorting algorithms for

manycore GPUs. In Parallel Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium, pages 1 { 10, May 2009.

[12] N. Leischner, V. Osipov, and P. Sanders. GPU sample sort. In Parallel Distributed
Processing (IPDPS), 2010 IEEE International Symposium on, pages 1 {10, April 2010.

[13] Philippe Helluy. A portable implementation of the radix sort algorithm in opencl.
2011.

[14] B. Montrucchio P. Giaccone F. Gul, O. Usman Khan. Analysis of fast parallel sorting
algorithms for gpu architectures. In Proceeding FIT ’11 Proceedings of the 2011
Frontiers of Information Technology, 2011.

IF : 4.547 | IC Value 80.26Volume : 3 | Issue : 11 | November 2014 • ISSN No 2277 - 8179VOLUME-6, ISSUE-6, JUNE-2017 • ISSN No 2277 - 8160

140 X GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS

	Page 1
	Page 2
	Page 3
	Page 4

