International

Original Research Paper

Mathematics

On Intuitionistic Fuzzy σ - Baire Spaces

Dr.E.Poongothai

Asst.Prof.of Mathematics, Shanmuga Industries Arts & Science College, Tiruvannamalai,Tamil Nadu, India.

ABSTRACT

In this paper the concepts of intuitionistic fuzzy σ -Baire spaces are introduced and characterizations of intuitionistic fuzzy σ -Baire spaces are studied and several examples are given.

KEYWORDS: Intuitionistic fuzzy F_o set, Intuitionistic fuzzy G_o set, Intuitionistic fuzzy nowhere dense set, Intuitionistic fuzzy σ -nowhere dense set, Intuitionistic fuzzy σ -first category, Intuitionistic fuzzy σ -second category, Intuitionistic fuzzy σ -Baire space.

1. Introduction

The fuzzy concept has invaded almost all branches of mathematics ever since the introduction of fuzzy sets by L.A.Zadeh [12]. The theory of fuzzy topological spaces was introduced and developed by C.L.Chang [6] and since then various notions in classical topology have been extended to fuzzy topological space. The idea of "intuitionistic fuzzy set" was first published by Atanassov [1] and many works by the same author and his colleagues appeared in the literature [2,3,4]. Later, this concept was generalized to "intuitionistic L-fuzzy sets" by Atanassov and Stoeva [5]. The concept of σ -nowhere dense set was introduced and studied by Jiling Cao and Sina Greenwood [9] in 2000. The concept of fuzzy σ -Baire space is introduces and studied by G.Thangaraj and E.Poongothai[11]. In this paper, we introduce the concept of Intuitionistic fuzzy σ -nowhere dense set and Intuitionistic fuzzy σ -Baire spaces. We discuss several characterizations of those spaces and examples are given to illustrate the concepts introduced in this paper.

2. Preliminaries

Definition 2.1 [3] Let X be a non-empty set. An Intuitionistic Fuzzy Set (IFS) A in X is defined as an object of the form $A = \{(x, \mu_A(x), \vartheta_A(x)) : x \in X\}$, where $\mu_A(x) : X \to [0,1]$ and $\vartheta_A(x) : X \to [0,1]$ denote the membership and non-membership functions of A respectively, and $0 \le \mu_A(x) + \vartheta_A(x) \le 1$, for each $x \in X$.

Definition 2.2 [3] Let A and B be two IFSs of the non-empty set X such that

$$A = \{\langle x, \mu_A(x), \vartheta_A(x) \rangle \colon x \in X\},\$$

$$B = \{\langle x, \mu_B(x), \vartheta_B(x) \rangle \colon x \in X\}.$$

We define the following basic operations on A and B.

- (i) $A \subseteq B \ iff \ \mu_A(x) \le \mu_B(x) \ and \ \vartheta_A(x) \ge \vartheta_B(x), \forall x \in X$
- (ii) $A \supseteq B \text{ if } f \mu_A(x) \ge \mu_B(x) \text{ and } \vartheta_A(x) \le \vartheta_B(x), \forall x \in X$
- (iii) $A = B \ iff \ \mu_A(x) = \mu_B(x) \ and \ \vartheta_A(x) = \vartheta_B(x), \forall x \in X$
- (iv) $A \cup B = \{\langle x, \mu_A(x) \lor \mu_B(x), \vartheta_A(x) \land \vartheta_B(x) \rangle : x \in X\}$
- (v) $A \cap B = \{ \langle x, \mu_A(x) \wedge \mu_B(x), \vartheta_A(x) \vee \vartheta_B(x) \rangle : x \in X \}$
- (vi) $A^c = \{\langle x, \vartheta_A(x), \mu_A(x) \rangle : x \in X\}.$

Definition 2.3 [7] An Intuitionistic fuzzy topology (IFT) on X is a family T of IFSs in X satisfying the following axioms.

- (i) $0,1 \in T$
- (ii) $G_1 \cap G_2 \in T$, for any $G_1, G_2 \in T$
- (iii) $\bigcup G_i \in T \text{ for any } family \{G_i/i \in J\} \subseteq T$

In this case, the pair (X,T) is called an Intuitionistic fuzzy topological space (IFTS) and any IFS in T is known as Intuitionistic fuzzy open set (IFOS) in X.

The complement A^c of an IFOS A in an IFTS (X,T) is called an Intuitionistic fuzzy closed set (IFCS) in X.

Definition 2.4 [7] Let (X,T) be an IFTS and $A = \langle X, \mu_A, \vartheta_A \rangle$ be an IFS in X. Then the Intuitionistic fuzzy interior and an Intuitionistic fuzzy closure are defined by

$$int(A) = \bigcup \{G/G \text{ is an IFOS in X and } G \subseteq A\},$$

$$cl(A) = \bigcap \{K/K \text{ is an IFCS in X and } A \subseteq K\}.$$

Proposition 2.5 [7] Let (X, T) be any Intuitionistic fuzzy topological space. Let A be an IFS in (X, T). Then

- (i) 1 IFcl(A) = IF int (1 A)
- (ii) 1 IFint(A) = IF cl(1 A).

Definition 2.6 [8] An Intuitionistic Fuzzy Set A in an Intuitionistic fuzzy topological space (X, T) is called Intuitionistic fuzzy dense if there exists no Intuitionistic fuzzy closed set B in (X, T) such that $A \subset B \subset 1$.

Definition 2.7 [10] An Intuitionistic fuzzy set A in an Intuitionistic fuzzy topological spaces (X, T) is called an Intuitionistic fuzzy F_{σ} set in (X, T) if $A = \bigcup_{i=1}^{\infty} A_i$ where $1 - A_i \in T, \forall i$.

Definition2.8 [10] An Intuitionistic fuzzy set A in an Intuitionistic fuzzy topological space (X, T) is called an Intuitionistic fuzzy G_{δ} set in (X, T) if $A = \bigcap_{i=1}^{\infty} A_i$ where $A_i \in T, \forall i$.

3. Intuitionistic Fuzzy -nowhere dense sets

Definition 31 Let (X, T) be an Intuitionistic fuzzy topological space. An intuitionistic fuzzy set A in (X, T) is called an Intuitionistic fuzzy σ –nowhere dense set if A is an Intuitionistic fuzzy F_{σ} set such that IFint(A) = 0.

Example 32 Let $X = \{a, b, c\}$. Define the Intuitionistic fuzzy sets A,B,C and D as follows:

$$A = \langle x, \left(\frac{a}{0.6}, \frac{b}{0.6}, \frac{c}{0.5}\right), \left(\frac{a}{0.3}, \frac{b}{0.2}, \frac{c}{0.5}\right) \rangle$$

$$B = \langle x, \left(\frac{a}{0.6}, \frac{b}{0.6}, \frac{c}{0.6}\right), \left(\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.3}\right) \rangle$$

$$C = \langle x, \left(\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.4}\right), \left(\frac{a}{0.7}, \frac{b}{0.7}, \frac{c}{0.4}\right) \rangle$$
 and

$$D = \langle x, \left(\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.3}\right), \left(\frac{a}{0.7}, \frac{b}{0.7}, \frac{c}{0.7}\right) \rangle$$

Then $T = \{0, 1, A, B, C, D\}$ is an Intuitionistic fuzzy topologies on X. Thus (X, T) is an

Intuitionistic fuzzy topological spaces. Now consider the fuzzy set $G = \overline{A} \cup \overline{B} \cup C \cup D$ in (X, T). Then G is an Intuitionistic fuzzy F_{σ} set in (X, T) and int(G) = 0 and hence G is an Intuitionistic fuzzy σ —nowhere dense set in (X, T).

Proposition 3.3 If A is an Intuitionistic fuzzy dense set in (X, T) such that $IFB \le IF(1 - A)$, where B is an Intuitionistic fuzzy F_{σ} set in (X, T), then B is an Intuitionistic fuzzy σ —nowhere dense set in (X, T).

Proof Let A be an Intuitionistic fuzzy dense set in (X,T) such that $IFB \le IF(1-A)$ implies that $IFint(B) \le IFint(1-A) = 1 - IFcl(A) = 1 - 1 = 0$ and hence

IFint(B) = 0. Therefore B is an Intuitionistic fuzzy σ –nowhere dense set in (X, T).

Proposition 3.4 If A is an Intuitionistic fuzzy F_{σ} set and Intuitionistic fuzzy nowhere dense set in (X,T), then A is an Intuitionistic fuzzy σ –nowhere dense set in (X,T).

Proof Now $IFA \leq IFcl(A)$ for any fuzzy set in (X,T). Then, $IFint(A) \leq IFintcl(A)$. Since A is an Intuitionistic fuzzy nowhere dense set in (X,T), IFintcl(A) = 0 and hence IFint(A) = 0 and A is an Intuitionistic fuzzy F_{σ} set implies that A is an Intuitionistic fuzzy σ —nowhere dense set in (X,T).

Definition 3.5[8] Let (X,T) be an IFTS. Then (X,T) is called an Intuitionistic fuzzy open hereditarily irresolvable space if, $IFint(IFcl(A)) \neq 0$, then $IFint(A) \neq 0$ for any Intuitionistic fuzzy set A in (X,T).

Proposition 3.6 If (X, T) is an Intuitionistic fuzzy open hereditarily irresolvable space, any Intuitionistic fuzzy σ –nowhere dense set in (X, T) is an Intuitionistic fuzzy nowhere dense set in (X, T).

Proof.Let A be an Intuitionistic fuzzy σ –nowhere dense set in an Intuitionistic fuzzy open hereditarily irresolvable space (X, T). Then A is an Intuitionistic fuzzy F_{σ} set in (X, T) such that IFint(A) = 0. Since (X, T) is an Intuitionistic fuzzy open hereditarily irresolvable space, IFint(A) = 0 implies that IFint(IFcl(A)) = 0. Hence A is an Intuitionistic fuzzy nowhere dense set in (X, T).

Definition 3.7 An IFS A in an IFTS (X, T) is called Intuitionistic fuzzy σ – first category if $A = \bigcup_{i=1}^{\infty} A_i$, where A_i 's are Intuitionistic fuzzy σ –nowhere dense set in (X, T). Any other Intuitionistic fuzzy set in (X, T) said to be of σ –second category.

Theorem 3.8[8] Let (X,T) be an Intuitionistic fuzzy topological space. If (X,T) is called an Intuitionistic fuzzy open hereditarily irresolvable space, then IF int(A) = 0 for any non-zero Intuitionistic fuzzy set A in (X,T) implies IFint(IFcl(A)) = 0.

Definition 3.9 Let A be an Intuitionistic fuzzy σ – first category set in (X,T). Then 1-A is called an Intuitionistic fuzzy σ –residual set in (X,T).

Definition 3.10 An IFTS is called an Intuitionistic fuzzy σ –first category space if $1 = \bigcup_{i=1}^{\infty} A_i$, where A_i 's are Intuitionistic fuzzy σ –nowhere dense set in (X, T). (X, T) is called Intuitionistic fuzzy σ –second category space if it is not an Intuitionistic fuzzy σ –first category space.

4. Intuitionistic fuzzy σ -Baire Space

Definition 4.1Let (X, T) be an Intuitionistic fuzzy topological space. Then (X, T) is called an Intuitionistic fuzzy σ –Baire Space if IF int $(\bigcup_{i=1}^{\infty} A_i) = 0$ where A_i 's are Intuitionistic fuzzy σ –nowhere dense sets in (X, T).

Example 4.2 Let $X = \{a, b, c\}$. Define the Intuitionistic fuzzy sets A,B,C and D as follows:

$$A = \langle x, \left(\frac{a}{0.8}, \frac{b}{0.6}, \frac{c}{0.5}\right), \left(\frac{a}{0.4}, \frac{b}{0.2}, \frac{c}{0.3}\right) \rangle$$

$$B = \langle x, \left(\frac{a}{0.6}, \frac{b}{0.9}, \frac{c}{0.6}\right), \left(\frac{a}{0.3}, \frac{b}{0.1}, \frac{c}{0.2}\right) \rangle$$

$$C = \langle x, \left(\frac{a}{0.6}, \frac{b}{0.6}, \frac{c}{0.7}\right), \left(\frac{a}{0.3}, \frac{b}{0.4}, \frac{c}{0.4}\right) \rangle$$
 and

$$D = \langle x, \left(\frac{a}{0.2}, \frac{b}{0.3}, \frac{c}{0.3}\right), \left(\frac{a}{0.8}, \frac{b}{0.7}, \frac{c}{0.8}\right) \rangle$$

Then $T = \{0,1,A,B,C,D\}$ is an Intuitionistic fuzzy topologies on X. Thus (X,T) is an

Intuitionistic fuzzy topological spaces. Now consider the fuzzy set

$$G = \{A \cap B \cap (A \cup B)\}, \quad H = \{A \cap B \cap (A \cap B)\}, I = \{A \cap B \cap (A \cap B)A(A \cup B)\};$$

Where, G,H and I are Intuitionistic fuzzy σ – nowhere dense sets in (X,T). Also IF $int(G \cup H \cup I) = 0$. Hence (X,T) is an Intuitionistic fuzzy σ –Baire Space.

Proposition 4.3 Let (X,T) be an Intuitionistic fuzzy topological space. Then the following are equivalent.

- (i) (X, T) is an Intuitionistic fuzzy σ -Baire Space.
- (ii) IFint(A) = 0, for every Intuitionistic fuzzy σ –first category set A in (X, T).
- (iii) IFcl(B) = 1, for every Intuitionistic fuzzy σ –residual set B in (X, T).

 $\mathsf{Proof}(i) \Rightarrow (ii)$

Let A be an Intuitionistic fuzzy σ -first category set in (X,T), then $A = \bigcup_{i=1}^{\infty} A_i$, where $A_i's$ are Intuitionistic fuzzy σ -nowhere dense sets in (X,T). Now $IFint(A) = IFint(\bigcup_{i=1}^{\infty} A_i) = 0$. Since (X,T) is an Intuitionistic fuzzy σ -Baire Space. Therefore IFint(A) = 0 for any Intuitionistic fuzzy σ -first category set A in (X,T).

$$(ii) \Rightarrow (iii)$$

Let B be an Intuitionistic fuzzy σ –residual set in (X,T). Then (1-B) is an Intuitionistic fuzzy σ –first category set A in (X,T). By hypothesis, IFint(1-B)=0 which implies that 1-IFcl(B)=0. Hence IFcl(B)=1 for any Intuitionistic fuzzy σ –residual set A in (X,T).

$$(iii) \Rightarrow (i)$$

Let A be an Intuitionistic fuzzy σ – first category set in (X,T), then $A = \bigcup_{i=1}^{\infty} A_i$, where $A_i's$ are Intuitionistic fuzzy σ –nowhere dense sets in (X,T). Now A is an Intuitionistic fuzzy σ –first category set implies that 1-A is an Intuitionistic fuzzy σ –residual set in (X,T). By hypothesis, we have IFCl(1-A) = 1, which implies that 1-IFint(A) = 1. Hence IFint(A) = 0. That is, $IFint(\bigcup_{i=1}^{\infty} A_i) = 0$, where $A_i's$ are Intuitionistic fuzzy σ –nowhere dense sets in (X,T). Hence (X,T) is an Intuitionistic fuzzy σ –Baire Space.

Theorem 4.4 [10] In an IFTS (X, T), an IFS A is an Intuitionistic fuzzy σ —nowhere dense sets in (X, T), in and only if 1 - A is an Intuitionistic fuzzy dense and Intuitionistic fuzzy G_{δ} - set in (X, T).

Proposition 4.5 If $IFcl(\bigcap_{i=1}^{\infty} (A_i)) = 1$, where A_i 's are Intuitionistic fuzzy dense and Intuitionistic fuzzy G_{δ} - sets in (X, T), then (X, T) is an Intuitionistic fuzzy σ -Baire Space.

Proof. Now $IFcl(\cap_{i=1}^{\infty}(A_i)) = 1$, implies that $1 - IFcl(\cap_{i=1}^{\infty}(A_i)) = 0$. Then we have $IFint(1 - \cap_{i=1}^{\infty}(A_i)) = 0$, which implies that $IFint(\bigcup_{i=1}^{\infty}(1 - A_i)) = 0$. Let $B_i = 1 - A_i$. Then $IFint(\bigcup_{i=1}^{\infty}(B_i)) = 0$. Since A_i 's are Intuitionistic fuzzy dense and Intuitionistic fuzzy G_{δ} - sets in (X, T), by theorem $4.4, 1 - A_i$ is an Intuitionistic fuzzy σ -nowhere dense set in (X, T). Hence $IFint(\bigcup_{i=1}^{\infty}(B_i)) = 0$, where B_i 's are Intuitionistic fuzzy σ -nowhere dense sest in (X, T). Therefore (X, T) is an Intuitionistic fuzzy σ -Baire Space.

Proposition 4.6 If the Intuitionistic fuzzy topological space (X, T) is an Intuitionistic fuzzy σ –Baire Space, then (X, T) is an Intuitionistic fuzzy σ –second category space.

Proof. Let (X,T) be an Intuitionistic fuzzy σ – Baire Space. Then $IFint(\bigcup_{i=1}^{\infty}(A_i))=0$, where A_i 's are Intuitionistic fuzzy σ – nowhere dense sets in (X,T). Then $IF(\bigcup_{i=1}^{\infty}(A_i))\neq 1_x$. [Otherwise, $IF(\bigcup_{i=1}^{\infty}(A_i))=1_x$ implies that $IFint(\bigcup_{i=1}^{\infty}(A_i))=IF$ $int1_x=1_x$ which implies that 0=1, a contradiction]. Hence (X,T) is an Intuitionistic fuzzy σ –second category space.

Proposition 4.7 If the Intuitionistic fuzzy topological space (X,T) is an Intuitionistic fuzzy σ —Baire space and Intuitionistic fuzzy open hereditarily irresolvable space, then (X,T) is an Intuitionistic fuzzy Baire Space.

Proof.Let (X, T) be an Intuitionistic fuzzy σ —Baire Space and IF open hereditarily irresolvable space. Then, $IFint(\bigcup_{i=1}^{\infty} (A_i)) = 0$, where A_i 's are Intuitionistic fuzzy σ —nowhere dense sets in (X, T). By prop.3.6, A_i 's are Intuitionistic fuzzy nowhere dense sets in (X, T). Hence, $IFint(\bigcup_{i=1}^{\infty} (A_i)) = 0$, where A_i 's are Intuitionistic fuzzy nowhere dense sets in (X, T). Therefore (X, T) is an Intuitionistic fuzzy Baire Space.

Proposition 4.8. If the IFTS (X, T) is an IFBaire space and if the Intuitionistic fuzzy nowhere dense sets in (X, T) are Intuitionistic fuzzy F_{σ} sets in (X, T), then (X, T) is an Intuitionistic fuzzy σ –Baire Space.

Proof.Let (X,T) be an Intuitionistic fuzzy Baire space such that every Intuitionistic fuzzy nowhere dense set A_i is an Intuitionistic fuzzy F_σ set in (X,T). Then $IFint(\bigcup_{i=1}^\infty (A_i)) = 0$, where A_i 's are Intuitionistic fuzzy nowhere dense sets in (X,T). By prop. 3.4, A_i is an Intuitionistic fuzzy σ –nowhere dense set in (X,T). Hence $IFint(\bigcup_{i=1}^\infty (A_i)) = 0$, where A_i 's are Intuitionistic fuzzy σ –nowhere dense sets in (X,T). Therefore (X,T) is an Intuitionistic fuzzy σ –Baire Space.

Proposition 4.9. Let (X,T) be an Intuitionistic fuzzy topological space. If $IF(\bigcap_{i=1}^{\infty} (A_i)) \neq 0$, where $A_i's$ are Intuitionistic fuzzy dense and Intuitionistic fuzzy G_{δ^-} sets in (X,T), then (X,T) is an Intuitionistic fuzzy σ –second category space.

Proof. Now $IF(\bigcap_{i=1}^{\infty}(A_i)) \neq 0$ implies that $IF1 - (\bigcap_{i=1}^{\infty}(A_i)) \neq 1 - 0 = 0$. Then we have $IF(\bigcup_{i=1}^{\infty}(1 - A_i)) \neq 1$. Since A_i is an Intuitionistic fuzzy dense and Intuitionistic fuzzy G_{δ} - set in (X,T), by prop 4.3, $IF(1 - A_i)$ is an Intuitionistic fuzzy σ -nowhere dense set in (X,T). Hence $IF(\bigcup_{i=1}^{\infty}(1 - A_i)) \neq 1$, where $IF(1 - A_i)$'s are Intuitionistic fuzzy σ -nowhere dense sets in (X,T). Hence (X,T) is not an Intuitionistic fuzzy σ - first category space. Therefore (X,T) is an Intuitionistic fuzzy σ -second category space.

REFERENCES

- K. Atanassov, Intuitionistic fuzzy sets, in: V.Sgurev, Ed., VII ITKR's Session, Sofia June 1983 Central Sci. and Techn. Library, Bulg. Academy of Sciences 1984.
- [2] K.Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and systems 20 (1986) 87-96.
- [3] K.Atanassov, Review and new results on intuitionistc fuzzy sets, Preprint IM- MFAIS-1-88, Sofia 1988.
- [4] K. Atanassov and S.Stoeva, Intuitionistic fuzzy sets, in: Polish Syrup. On Interval & Fuzzy Mathematics, Poznan, (1983) 23-26.
- [5] K.Atanassov and S.Stoeva, Intuitionistic L-Fuzzy sets, in:R.Trappi,Ed., Cybernetics and system Research 2 (1984) 539-540.
- [6] C.L.Chang, Fuzzy Topological Spaces, J.Math.Anal.Appl. 24 (1968) 182-190.
- [7] D.Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems 88 (1997) 81-89.
- [8] R.Dhavaseelan, E.Roja and M.K.Uma, Intuitionistic Fuzzy Resolvable and Intuitionistic FuzzyIrresolvablespaces, Scientia Magna 7 (2011) 59-67.
- [9] Jiling Cao and Sina Greenwood, The idela generated by σ-nowhere dense sets, Appl. Gen. Topology, Vol. No. 1, (2000), 1-3.
- [10] S.Soundararajan, U.Rizwan and Syed Tahir Hussainy, Int J. of Science and Humanities 1(2015) No.2,727-738.
- [11] G.Thangaraj and E.Poongothai, On Fuzzy σ-Baire Spaces, Int.J.Fuzzy Mathematics and Systems 3 (2013), No. 4, 275-283.
- [12] L.A.Zadeh, Fuzzy Sets, Inform and control, 8(1965), 338-353.