

 D. R. BHATT
 Assoc. 1101, Department of structural engineering, B.V.M. Engineering College, Vallabh Vidyanagar (388120), Gujarat, India

 S. V. MEVADA
 Asst. Prof., Department of structural engineering, B.V.M. Engineering College, Vallabh Vidyanagar (388120), Gujarat, India.

ABSTRACT This paper deals with the analysis of steel building frame with one, two, & three bays under the effect of dead load, live load, & lateral load(EQ). According to IS 800:2007(appendix-f) Frey-Morris polynomial model is used for determination of secant stiffness (rotational stiffness) of different connection like single web angle connection, double web angle connection with or without stiffener, header plate connection, & t-stub connection which is required for analysis of semi-rigid steel frame. Value of rotational stiffness is incorporated in analysis of steel frame using STAAD. Pro in place of assumption of rigid & ideal pinned condition. Analysis results in terms of parameter like shear force, bending moments, axial force in the member, top storey displacement, weight of frame, time period for rigid & pinned connection have been compared with corresponding results for various semi-rigid connections. Percentage rigidity of various types of connection in multi storey multi bay steel frames has also been determined in the present study.

KEYWORDS: Steel building frame, semi-rigid connection, Frey Morris polynomial model, rotational stiffness, standardization constant moment-rotation curve

INTRODUCTION

Analysis of connection is necessary because connection is the integral part of the structural system and behaviour of connection affect the stability of the structure. Connection failure should not happen before the member failure because connection failure is not as ductile as that of steel member. Generally, connection is classified by means of their strength (moment resistant of connection) as well as ductility (rotation capacity), in addition to that, there were three types of beam end connections namely, ideal pinned connection (flexible), semi-rigid connection, rigid or moment connection. In pinned connection, forces are fully transmitting but moment is not transmitting between the connected members so that there may be difference in the rotations of the connected member. As per IS 800-2007, flexible connection is used in frames up to about five storey in height where strength rather than stiffness is important in design. This connection is only used in the non-sway frame. Semi-rigid connection transfers vertical shear and some moment. Frey Morris polynomial model which is given in IS-800(appendix-f) is used for semi-rigid connection. This model is based on polynomial equation θ r = C1 (KM)¹ + C2 (KM)³ + C3 (KM)⁵, where K is a standardization parameter and is dependent upon connection type and geometry. C1, C2, C3 are curve fitting constants and M is the moment in kN.m. Moment-rotation curve for different connection are as shown in fig.

In rigid or moment connection, forces and moment is fully transmitting between the connected members. In this case, there is no difference between the connected members so that the joint is said to be rotationally stiff means that deformation is negligible and this connection is generally used in sway frame.

M.E.KARTAL; H.B.BASAGA; M.MUVAFIK Studied Effect of semi-rigid connection on structural response. For numerical analysis author developed SEMIFEM finite element programme in FORTRAN language in which semi-rigid connection are define in terms of rotational spring stiffness or by means of connection ratio. In this paper, semi-rigid connection is considering in portal frame, prefabricated structure, steel X-braced RC frame, and steel truss system. The variation in moment, shear force, axial force, stress and displacement is investigated. M. N.NADLER; ABOLHASSAN Studied shaking table tests of flexible, semi-rigid, and rigid frames. In this experimental study one-storey, one-bay steel frame was constructed in such a way that connection would be changed from pinned to semi rigid to rigid. Based on the intensities record of past earthquake and with use of shaking table, structure with all these three types of connections were subjected to the base-excitation and studied behaviour of frame in terms of lateral drift and ductility. The main aim of this experiment research was to investigate the potential for using semi-rigid structure in seismically active zone. B.S.DHILLON; O MALLEY [2] Studied interactive design of semi-rigid steel frames. Frey-Morris polynomial is used for design of semi-rigid connection and they used second order non-linear analysis to check the effect of connection flexibility and geometric nonlinearity of the elements. Two-storey, one-bay frame Was analysed with semi-rigid and rigid connection with and without geometric non-linearity and finally, show the effects of connection flexibility and geometric nonlinearity on moments and displacements. S.W.JONES; P.A.KIRBY Studied effect of semi-rigid connection on steel column strength. The main aim of this paper is to determine the effect of connection stiffness on the column behaviour and due to rotational restraint from adjacent beam there would be change in the column effective length. In practice minor-axis buckling is more critical so that for accurate representation of connection behaviour cubic B-spline curve fitting methods are used. A.Y.ELGHAZOULI [3] Studied ductility of frames with semi-rigid connection. The main aim of this experimental study is to analyse the seismic behaviour of frames with semi-rigid partial strength connection. The experiment includes monotonic, cyclic and dynamic test on two-storey steel frames with semi-rigid and rigid beam-column connection and compare the experimental result with analytical results.

ANALYSIS

In the present study, analysis of multi-story multi bay steel frame considering ideally rigid and ideally pinned and semi-rigid conditions in STAAD Pro.2006 using IS-800(2007) has been carried

LITERATURE REVIEW

VOLUME-6, ISSUE-6, JUNE-2017 • ISSN No 2277 - 8160

out. To find out percentage rigidity of various types of connection in multi storey steel frames are determined. Analysis results in terms of parameters like bending moments, shear forces, axial forces for members, top storey displacements, time period and weight of frames for ideal pinned and rigid connections have been compared with corresponding results for semi rigid connections. Different types of semi rigid connections incorporated are Single web angle connections, Top and seat without web angel connections, End plate with column stiffeners connections, T-Stub connectors and Header plate **connections**.

Flow chart for analysis of semi-rigid connection

EXAMPLE PROBLEM

- Details of loading for steel frame analysis
 - Dead load=1 Kn/m²
 - Live load=2.5kn/m² on typical floring
 - Total dead load per meter width=4 kn/m
 - Total live per meter length of beam=10 kn/m
 - Typical storey height=3m
 - Zone 3
 - Load case detail-1.5DL+1.5EQX

• A sample calculation is shown in a sheet as shown in below: DESIGN OF BEAM

D.L	4.00	kN/m	Ymo	1.	10	
L.L	10.00	kN/m	fy	250) N	l/mm^2
TOTAL	14.00	KN/m				
WIDTH	4.00	m				
max bending moment		42.00	kNm			
section modulus required		184800.00) mm^3			
select suitable section ISMB 200	0					
@0.254KN/M		0.25	kN/m			
D	200.00	mm		R(n	nm)	11.00
В	100.00	mm		B(n	nm)	50.00
Tf	10.80	mm				
Tw	5.70	mm				
depth of web(d)		156.40	mm			
moment of inertia about major						
axis(lzz)		22354000) mm^4			
elastic section modulus(ze)		223500	mm^3			
plastic section modulus(zp)		253860	mm^3			
section classification						
€			1.00			
b/tf			4.63	<	9.40	1
d/tw			27.44	<	84.0	0
HENCE SECT	ION IS PL	ASTIC				
SELF WT BEAM		0.38 kN	/m			
Total load acting on the beam		14.38 kN	/m			
max bending moment		42.76 kN	m			

PLASTIC SECTION MODULUS REQUIRED			188152	<	253860	mm^3	(safe)	
	nce							
design shear force		43.14	kN					
Vd		181.21	kN					
Also	0.6vd	108.73	kN					
Therefore, the design	shear							
force		V	<			0.6vd	ok	
Beta	1.00	check fo (for plast section)	r design ca tic	paci	ty of the	section		
design bending mom	ent	57.70 · KNm	< 60.93					ok

hence, design capacity of member is more than the maximum bending moment

DESIGN OF CONNECTION (3S-1B FRAME)

	ANGLE CONNECTION				
BEAM	ISMB 200			Reaction	on 27.13KN
COLUMN	ISSC 250			tw tf	5.70 mm 10.80mm
FLANGE WIDTH C	OF BEAM	100	mm	r1	10 mm
length of seat and	gle	100	mm	r2	5.50 mm
				fyw	250N/mm^2
line of beam end clearance of	required at root			20.94n	nm
of column & toler	ance			15.00n	nm
required length o	f outstanding leg			35.94n	nm
length of bearing	on the cleat	b1		15.14n	nm
distance from end	d of the bearing	b2		12.14n	nm
moment at the ro due to load	oot of the angle			132.05	Nm
Moment capacity				295.45	Nm
hence connection prov of se	n is safe ide assume size at angle				
shear capacity of o	utstanding leg of cle	eat	85.39	>27.13KN	I
shear strength of b	eam		149.76	>27.13KN	

2)HEADER PLATE CONNECTION

ASSUME THICKNESS OF END PLATE	6	mm
length of plate	150	mm
width of plate	120	mm
gauge distance	50	mm
ength of fillet weld connecting end plate	138	mm
size of the weld	2.29	mm
provide fillet weld	6.00	mm
shear stress on web of the beam	31.73	<131.37 N/mm^2

3)T-STUB CONNECTION

split beam to beam top flange connection	MOMENT	14.55KN.m
flange force	72.73	kN
thickness of T-web hence, thickness is adequate split beam to column flange connection	3.20	< 5.70 mm
minimum edge distance distance fillet line to bolt moment in T-stub	24.00 11.15 405.49	mm mm KNm
MOMENT CAPACITY OF T-STUB FLANGE	530.18	kNm

IF : 4.547 | IC Value 80.26

4)DOUBLE WEB ANGLE CONNECTION

shear c	apacity of M16 bolt in single shea	ar	29.13KN	dia of bolt 16mm
h a a star			42 (2)(N	e 40mm
Dearing	g capacity on web of beam		43.02NN	P 45mm
streng	th of the bolt		29.13NN	
	diate = == (=)		105 70	te romm
gauge	ustance(g)		105.70	nm kd 0.58mm
horizor	ntal choor force on holt due to me	mont	43 IIIII 7 32 VN	
vortica	I chear force par bolt	ment	7.25 NN	
Pocult	i shear force per bolt			20 KN
hence	connection is safe		5.52KN < 2:	.50 KN
connec	ction to the column flange			
slip res	istance per bolt		62.63 KN	1
	bearing resistance on 8 mm clea	at per	61 23KN	
	bence bolt strength		61 23KN	
	horizontal shear force on bolt		24.11KN	
	vertical shear force		6.78 KN	
	resultant shear force		25.05KN	
	hence, connection is sa	fe		
Cleat				
angle	provide two apple of 130*130*6	oflond	175.00	mm
•	bending moment	onieng	830.48	Nm
	moment capacity		12250	Nm
	moment capacity		12250	
	hence, the chosen cleat angle si required	ze is as		
Accordi	ng to Frey-morris polynomial m	odel ca	lculate secan	t-stiffness(kNm/rad)
	⊕=c1(km)^1+c2	2(km)^3	3+c3(km)^5	
1 to	p & seat angle connection	Ν	NOMENT 7.6	1KNm
c1	1630	equati	on of k	
c2	7.25E+14	k=(d^	-1.5)*(ta^-0.5	5)*(la^-0.7)*(db^-1.1)
c3	3.31E+23	Ta 10	nm	
		D 200)mm	
		La 100	Omm	
		Db 20	mm	
		K 1.64	4938E-07	
			0.00348	rad
secant stiffness	(m/=) 21	86.36	kNm/rad	
2 he	ader plate connection			

c1			
c2			

c2	271000
c3	6.06E+11

K=(tp^-1.6)*(g^1.6)*(dp^-2.3)*(tw^-0.5)

,	 ,		
tp		6mm	
a		50mm	

Dp	150mm
Tw	5 7mm

	-
К	0.00012313
?	0.00428694

SECANT STIFFNESS(M/θ) 1775.16KNm/rad

.....

```
    T-STUB CONNECTION
    C1
```

C2

C3

405
4.45E+13
0.005.00

-2.03E+23

K=(d^-1.5)*(tf^-0.5)*(lt^-0.7)*(db^-1.1)

d 200mm

tf 10.8mm

lt 100mm Db 16mm K 2.02867E-07

? 0.0007872

9667.14KNm/rad

3.87

SECANT STIFFNESS (M/®)

4 DOUBLE WEB ANGLE CONNECTION

C1	1640	K=(da^-2.4)*(tc^-1.81)*(g^0.15)
C2	1.03E+14	da=130 mm
C3	8.18E+25	tc=10mm
		g=105.7mm
	k=2.63E-07	
	0 =0.006743	

1128.51KNm/rad

SECANT STIFFNESS (Μ/θ)

VOLUME-6, ISSUE-6, JUNE-2017 • ISSN No 2277 - 8160

RESULT AND DISCUSSION

SIZE PARAMETER & SECANT STIFFNESS FOR 3S-1B FRAME

NO	TYPE OF THE CONNECTION	DIMENSION(mm)	ROTATIONAL STIFFNESS
			(KNm/rad)
1	Top & seat angle	La=100,ta=10,db=20,r1=8,	2186
	connection	Width=65	
2	Double web	da=130,tc=10,g=105.7	1128.50
	angle		
3	Header plate	Tp=6,dp=150,tw=5.7,g=50	1775
	connection		
4	T-stub	d=200,tf=10.8,lt=100,db=16	9667
	connection		

SIZE PARAMETER & SECANT STIFFNESS FOR 3S-2B FRAME

NO	TYPE OF THE	DIMENSION(mm)	ROTATIONAL
	CONNECTION		STIFFNESS (KNm/rad)
1	Top & seat angle	La=100,ta=10,db	2322
	connection	=20,r1=8,b=75	
2	Double web angle	da=130,tc=10,g=	1282.72
		105.7	
3	Header plate	Tp=6,dp=150,tw=	1838.15
	connection	5.7,g=50	
4	T-stub connection	d=200,tf=10.8,lt=	9954.73
		100.db=16	

SIZE PARAMETER & SECANT STIFFNESS FOR 3S-3B FRAME

NO	TYPE OF THE	DIMENSION(mm)	ROTATIONAL
	CONNECTION		STIFFNESS(KNm/rad)
1	Top & seat angle	La=100,ta=12,db=20,r	2700
	connection	1=8,b=75	
2	Double web	da=130,tc=10,g=105.7	1268.67
	angle		
3	Header plate	Tp=6,dp=150,tw=5.7,g	1832
	connection	=50	
4	T-stub	d=200,tf=10.8,lt=100,	9929.23
	connection	db=16	

RESULT

1)END SPAN MOMENT

2) MID SPAN MOMENT

31.14 kNm/deg

3) AXIAL FORCE IN COLUMN

4)SHEAR FORCE IN COLUMN

5) TIME PERIOD IN FRAME

6)TOP STROEY DISPLACEMENT

7) WEIGHT OF FRAME

CONCLUSION

- It has been observed that increase in end span moment in the beam enhances with increase in rigidity of end conditions for the beam.
- It has been observed that axial force and shear force in the column is also increase with increasing the rigidity of the end condition and also with increasing the bay.
- Time period and top storey displacement of frame is increased • with increasing the flexibility of the connection and it is increased with increase the number of bay.

REFERENCES

- Chen, W. F. (2000). "Ed. Practical Analysis for Semi-Rigid Frame Design." World Scientific Publishing Co. River Edge, NJ. 1.
- Dhillon, B. S., and O'Malley J.W. (1999). "Interactive design of semi rigid steel frames", J. 2. Struct. Engrg., ASCE, 125(5), 556-564.
- Elnashai, A.S. and Elghazouli, A.Y. (1994). "Seismic behaviour of semi-rigid steel frames experimental &analytical investigation." Journal of constructional steel research. IS800 (2007). Code of Practice for General Construction in Steel, Bureau of Indian 3.
- 4. Standard, New Delhi.