Mrs.S.A.DHANALAKS
 HMI

EXISTENCE OF A LOCAL SOLUTION OF A PARABOLIC HYPERBOLIC FREE BOUNDARY PROBLEM

ABSTRACT A parabolic-hyperbolic free boundary problem has been studied. After the study, we transform the problem for moving domain into an equivalent one which defined on a fixed domain. The existence and uniqueness of a local solution of the transformed problem by applying Banach fixed point theorem is derived.

KEYWORDS : Free boundary problem, local solution, moving domain, fixed domain

1.INTRODUCTION

In this article, we study a parabolic-hyperbolic free boundary problem ${ }^{[3]}$ is studied. For this, Fick's law is assumed, i.e., $\left(k_{1} K_{p}(C) P+\right.$ $\left(k_{2} K_{0}(C) Q\right) C$. Hence, C satisfies the following equation:

$$
\begin{align*}
& \left.\frac{\partial C}{\partial t}=D_{1} \Delta C-\left(k_{1} K_{P}(C)\right) P+k_{2} K_{Q}(C) Q\right) C \text { in } \Omega(\mathrm{t}) \tag{1.1}\\
& \mathrm{C}(x, \mathrm{t})=\bar{C} \text { on } \partial \Omega(\mathrm{t}), \mathrm{C}(x, 0)=\mathrm{C}_{0}(x) \text { in } \Omega(0), \tag{1.2}
\end{align*}
$$

where (t) represents the domain at time t ,
D^{1} is positive constant. k_{1} and k_{2} are two positive constants, C is a positive constant.

Fick's law is also assumed $\left(\mu_{1} G_{1}(W) P+\mu_{2} G_{2}(W) Q\right) W$ is the drug consumption rate μ_{1}, μ_{2} are two positive constants.

Hence, W satisfies $\frac{\partial \mathrm{W}}{\partial t}=D_{2} \Delta W-\left(\mu_{1} G_{1}(W) P+\mu_{2} G_{2}(W) Q\right) W$ in $\Omega(\mathrm{t})$, in (t),
$W(x, t)=\bar{W}$ on $\partial \Omega(\mathrm{t}), \mathrm{W}(\mathrm{x}, 0)=\mathrm{W}_{0}(\mathrm{x})$ in $\Omega(0)$,
Where D_{2} is to be a positive constant, (W) is a positive constant.
we denote v is the velocity fields v. assume byDarcy's law, we have

$$
\begin{equation*}
\underline{\mathrm{v}}=-\nabla \sigma \text { in } \Omega(\mathrm{t}), \mathrm{t}>0, \tag{1.5}
\end{equation*}
$$

where σ is the pressure
$\mathrm{P}+\mathrm{Q}+\mathrm{D}=\mathrm{N}$ in $\Omega(\mathrm{t}), \mathrm{t}>0$,
where N is a total number of cells per unit volume.
The mass conservation law for P, Q, D in

$$
\begin{align*}
& \frac{\partial P}{\partial t}+\operatorname{div}(P \bar{v})=\left[K_{B}(C)-K_{Q}(C)-K_{A}(C)\right] \mathrm{P}+\mathrm{Q} K_{P}(C)-t_{1} G_{1}(W) P \quad \text { in } \Omega(\mathrm{t}), t>0 \tag{1.7}\\
& \frac{\partial Q}{\partial t}+\operatorname{div}(Q \bar{v})=K_{Q}(C) P-\left[K_{P}(C)+K_{D}(C)\right] \mathrm{Q}-t_{2} G_{2}(W) Q \quad \text { in } \Omega(\mathrm{t}), t>0 \tag{1.8}
\end{align*}
$$

$\frac{\partial D}{\partial t}+\operatorname{div}(D \bar{v})=K_{A}(C) P+K_{D}(C) Q-K_{R} D+t_{1} G_{1}(W) P+t_{2} G_{2}(W) Q$
$\Omega(\mathrm{t}), t>0$
where t_{1} and t_{2} are the positive constants.
We take the boundary conditions for σ to be
$\sigma=\theta k$ on $\partial \Omega(t), t>0$
$\frac{\partial \sigma}{\partial n}=-V_{n}$ on $\partial \Omega(\mathrm{t}), t>0$
and the initial data
$P(x, 0)=P_{0}(x), Q(x, 0)=Q_{0}(x), D(x, 0)=D_{0}(x)$
for $x \in \Omega(0)$
where $\Omega(0)$ is given, θ is the surface tension, k is the mean curvature of the tumor surface $\frac{\partial}{\partial n}$ is the derivatives in the direction n of the outward normal, and vn is the velocity of the free boundary $\partial \Omega(\mathrm{t})$ in the direction n.

Equation (1.10) is based on the assumption that the pressure σ on the surface of the tumor is proportional to the surface tension and (1.11) is a standard kinetic condition.

In this article, we consider spherically symmetric solution for the system ${ }^{[2]}(1.1)-(1.12)$.

It is clear that, under the condition of spherical symmetry, for given \bar{v} and $R(t), \sigma$ we easily solved from (1.5) and (1.10).

It is obvious that from (1.7)-(1.9), we get the following equation for \bar{v} By applying the L_{p} theory of parabolic equations, the characteristic theory of hyperbolic equations and the Banach fixed point theorem, we prove that there exists a unique local solution of (1.1) - (1.12). If we make an addition to (1.7) - (1.9), then we get the following equation for \bar{V}.
$\frac{\partial P}{\partial t}+\operatorname{div}(P \bar{v})+\frac{\partial Q}{\partial t}+\operatorname{div}(Q \bar{v})+\frac{\partial D}{\partial t}+\operatorname{div}(D \bar{v})=$
$P K_{B}(C)-K_{A}(C) P+K_{P}(C) Q-t_{1} G_{1}(W) P+K_{Q}(C) P-K_{P}(C) Q-K_{D}(C) Q-$
$t_{2} G_{2}(W) Q+K_{A}(C)+K_{D}(C) Q-K_{R}(D)+t_{1} G_{1}(W) P+t_{2} G_{2}(W) Q$
$\frac{\partial}{\partial t}(P+Q+D)+\operatorname{div}(P+Q+D) \bar{v}=P K_{B}(C)-K_{R}(D)$
$\frac{\partial}{\partial t}(N)+\nabla \bar{v}(\mathrm{~N})=P K_{B}(C)-K_{R}(D)$
$(0+\operatorname{div}(\bar{v})) N=P K_{B}(C)-K_{R}(D)$
$N(\operatorname{div}(\bar{v}))=P K_{B}(C)-K_{R}(D)$
$(\operatorname{div}(\bar{v}))=\frac{1}{N}\left(P K_{B}(C)-K_{R}(D)\right)$
for $x \in \Omega(\mathrm{t}), \mathrm{t}>0$.

Conversely, from (1.13) and (1.7)-(1.9) we have
$\frac{\partial}{\partial t}(P+Q+D)+\operatorname{div}(P+Q+D) \bar{v}=\frac{1}{N}\left(P K_{B}(C)-K_{R}(D)\right) \times$

$$
(N-(P+Q+D)) \quad \text { for } x \in \Omega(\mathrm{t}), \mathrm{t}>0
$$

By uniqueness, we deduce that (1.6) is equivalent to (1.13) and we use (1.13) instead of (1.6).

In this article the model ${ }^{[1]}(1.1)$ - (1.12) is a three-dimensional model. Consider the well-posedness of this problem ${ }^{[6]}$ under the case where the initial data and the solution are spherically symmetric. Hence, C, W, P, Q and D are spherically symmetric in the space variable, let $r=$ $|x|$, we denote
$C=C(r, t), W=W(r, t), P=P(r, t), Q=Q(r, t), D=D(r, t)$

$$
\text { for } 0 \leq r \leq R(t), t \geq 0 \text {, and }
$$

$C=C_{0}(r), W_{0}=W_{0}(r), P_{0}=P_{0}(r), Q_{0}=Q_{0}(r), D_{0}=D_{0}(r)$ for $0 \leq r \leq R_{0}=R(0)$
We also assume that there is a scalar function ${ }^{[10} V=V(r, t)$ such that \bar{V} $=(r, t) \frac{x}{R}$,
since σ is spherically symmetric in the space variable, as mentioned before, we eliminate the pressure and derive the model (1.1) - (1.12) as:
$\frac{\partial C}{\partial t}=D_{1} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial C}{\partial r}\right)-F(C, P, Q) C$ for $0<r<R(t), t>0$,
$\frac{\partial C}{\partial r}(r, t)=0$ at $r=0, C(r, t)=\bar{C}$ at $r=R(t)$ for $t>0$,
$C(r, 0)=C_{0}(r)$ for $0 \leq r \leq R_{0}$
$\frac{\partial W}{\partial t}=D_{1} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial W}{\partial r}\right)-G(W, P, Q) W$ for $\left.0<r<R(t), t>0, .17\right)$
$\frac{\partial W}{\partial r}(r, t)=0$ at $r=0, W(r, t)=\bar{W}$ at $r=R(t)$ for $t>0$,
$W(r, 0)=W_{0}(r)$ for $0 \leq r \leq R_{0}$ (1.20)
$\frac{\partial P}{\partial t}+\mathrm{V} \frac{\partial P}{\partial r}=g_{11}(C, W, P, Q, D) P+g_{12}(C, W, P, Q, D) Q+g_{13}(C, W, P, Q, D) D$
for $0 \leq r \leq R(t), t>0$
$\frac{\partial Q}{\partial t}+\mathrm{V} \frac{\partial Q}{\partial r}=g_{21}(C, W, P, Q, D) P+g_{22}(C, W, P, Q, D) Q+g_{23}(C, W, P, Q, D) D$
for $0 \leq r \leq R(t), t>0$
$\frac{\partial D}{\partial t}+\mathrm{V} \frac{\partial D}{\partial r}=g_{31}(C, W, P, Q, D) P+g_{32}(C, W, P, Q, D) Q+g_{33}(C, W, P, Q, D) D$
for $0 \leq r \leq R(t), t>0$
$\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} V\right)=h(C, W, P, Q, D)$ for $0<r \leq R(t), t>0$,
$V(0, t)=0$ for $t>0$.
$\frac{d R(t)}{d t}=V(R(t), t) \quad$ for >0,
$P(r, 0)=P_{0}(r), Q(r, 0)=Q_{0}(r), D(r, 0)=D_{0}(r)$ for $0 \leq r \leq R_{0}$,
$R(0)=R_{0}$ is prescribed,
where
$F(C, P, Q)=k_{1} K_{P}(C) P+k_{2} K_{Q}(C) Q$,
$G(W, P, Q)=\mu_{1} G_{1}(W) P+\mu_{2} G_{2}(W) Q$.
$g_{11}(C, W, P, Q, D)=\left[K_{B}(C)-K_{Q}(C)-K_{A}(C)-t_{1} G_{1}(W)\right]-\frac{1}{N}\left[K_{B}(C) P-K_{R} D\right]$,
$g_{12}(C, W, P, Q, D)=K_{P}(C)$,
$g_{13}(C, W, P, Q, D)=0$,
$g_{21}(C, W, P, Q, D)=K_{Q}(C)$,
$g_{22}(C, W, P, Q, D)=-\left[K_{P}(C)+K_{D}(C)+t_{2} G_{2}(W)\right]-\frac{1}{N}\left[K_{B}(C) P-K_{R} D\right]$,
$g_{23}(C, W, P, Q, D)=0$
$g_{31}(C, W, P, Q, D)=K_{A}(C)+t_{1} G_{1}(W)$,
$g_{32}(C, W, P, Q, D)=K_{D}(C)+t_{2} G_{2}(W)$,
$g_{33}(C, W, P, Q, D)=-K_{R}-\frac{1}{N}\left[K_{B}(C) P-K_{R} D\right]$,
$h(C, W, P, Q, D)=\frac{1}{N}\left[K_{B}(C) P-K_{R} D\right]$

SECTION-2 REFORMULATION OF THE PROBLEM

To transform the varying domain $\{(x, t):|x|-r<R(t), t>0\}$ into a fixed domain, assume (R, C, W, P, Q, D) is a solution of (1.15)-(1.27) and $R(t)>0(t \geq 0)$, and make the change of variables,
$\rho=\frac{r}{R(t)}, \tau=\int_{0}^{t} \frac{d s}{R^{2}(t)}, \eta(\tau)=R(t), c(\rho, \tau)=C(r, t), w(\rho, \tau)=W(r, t)$,
$p(\rho, \tau)=P(r, t), q(\rho, \tau)=Q(r, t), d(\rho, \tau)=D(r, t)$,
$u(\rho, \tau)=R(t) v(r, t)$,
then the free boundary problem (1.15) (1.27) is transformed into the initial-boundary value problem[2] on the fixed domain $\{(\tau, \rho): 0 \leq \rho \leq 1, \tau \geq 0\}$
$\frac{\partial c}{\partial \tau}=D_{1} \frac{1}{\rho^{2}} \frac{\partial}{\partial \rho}\left(\rho^{2} \frac{\partial c}{\partial \rho}\right)+u(1, \tau) \rho \frac{\partial c}{\partial \rho}-\eta^{2} f(c, p, q) c$ fior $0<\rho<1, \tau>0$,
$\frac{\partial c}{\partial \rho}(0, \tau)=0, c(1, \tau)=\bar{c} \quad$ for >0,
$c(\rho, 0)=c_{0}(\rho) \quad$ for $0 \leq \rho \leq 1$,
$\frac{\partial w}{\partial \tau}=D_{2} \frac{1}{\rho^{2}} \frac{\partial}{\partial \rho}\left(\rho^{2} \frac{\partial w}{\partial \rho}\right)+u(1, \tau) \rho \frac{\partial w}{\partial \rho}-\eta^{2} g(w, p, q) w \quad$ for $0<\rho<1, \tau>0$,
$\frac{\partial w}{\partial \rho}(0, \tau)=0, w(1, \tau)=\bar{w} \quad$ for $\tau>0$,
$w(\rho, 0)=w_{0}(\rho) \quad$ for $0 \leq \rho \leq 1$,
$\frac{\partial p}{\partial \tau}+v \frac{\partial p}{\partial \rho}=\eta^{2}\left[g_{11}(c, w, p, q, d) p+g_{12}(c, w, p, q, d) q+g_{13}(c, w, p, q, d) d\right]$
for $0 \leq \rho \leq 1, \tau>0$,
$\frac{\partial q}{\partial \tau}+v \frac{\partial q}{\partial \rho}=\eta^{2}\left[g_{21}(c, w, p, q, d) p+g_{22}(c, w, p, q, d) q+g_{23}(c, w, p, q, d) d\right]$

$$
\begin{equation*}
\text { for } 0 \leq \rho \leq 1, \tau>0 \text {, } \tag{2.9}
\end{equation*}
$$

$\frac{\partial d}{\partial \tau}+v \frac{\partial d}{\partial \rho}=\eta^{2}\left[g_{31}(c, w, p, q, d) p+g_{32}(c, w, p, q, d) q+g_{33}(c, w, p, q, d) d\right]$

$$
\text { for } 0 \leq \rho \leq 1, \tau>0 \text {, }
$$

$$
\begin{equation*}
v(\rho, \tau)=u(\rho, \tau)-\rho u(1, \tau) \tag{2.11}
\end{equation*}
$$

for $0 \leq \rho \leq 1, \tau>0$,
$\frac{1}{\rho^{2}} \frac{\partial}{\partial \rho}\left(\rho^{2}\right)=\eta^{2}(\tau) \mathrm{h}(c, w, p, q, d) \quad$ for $0 \leq \rho \leq 1_{2} \tau>0$,
$u(0, \tau)=0$ for $\tau>0$,
$\frac{\partial \eta(\tau)}{\partial \tau}=\eta(\tau) u(1 . \tau) \quad$ for $\tau>0$
$p(\rho, 0)=p_{0}(\rho), q(\rho, 0)=q_{0}(\rho), d(\rho, 0)=d_{0}(\rho)$, for $0 \leq \rho \leq 1$,
$\eta(0)=\eta_{0}$,
$f(c, p, q)=F(c, p, q), g(w, p, q)=G(w, p, q)$,
$\bar{c}=\bar{C}, \bar{w}=\bar{W}, c_{0}(\rho)=C\left(\rho R_{0}\right), c_{0}(\rho)=W_{0}\left(\rho R_{0}\right)$,
$p_{0}(\rho)=P_{0}\left(\rho R_{0}\right), q_{0}(\rho)=Q_{0}\left(\rho R_{0}\right), d_{0}(\rho)=D_{0}\left(\rho R_{0}\right)$,
$\eta_{0}=R_{0}$.

Conversely, if (η, c, w, p, q, d, u) is a solution of (2.2)-(2.16) such that $\eta(\tau)>0$ for $\tau \geq 0$, then by making the change of variables
$r=\eta(\tau), t=\int_{0}^{\tau} \eta^{2}(s) d s, \mathrm{R}(t)=\eta(t), C(r, t)=c(\rho, \tau)$,
$W(r, t)=w(\rho, \tau)$,
$P(r, t)=p(\rho, \tau), Q(r, t)=q(\rho, \tau)$,
$D(r, t)=d(\rho, \tau), \quad v(r, t)=\frac{u(\rho, \tau)}{\eta(\tau)}$

Lemma 2.1:

Under the change of variables (2.1) or its inverse (2.17), the free boundary problem (1.15) - (1.27) is equivalent to initial-boundary value problem (2.2) - (2.16).

Remark 2.2:

From (2.12),
$u(\rho, \tau)=\frac{\eta^{2}(\tau)}{\rho^{2}} \int_{0}^{\rho} h\left(c(s, \tau), w(s, \tau), p(s, \tau), q(s, \tau), d(s, \tau) s^{2} d s\right)$ is obtained. Then using (2.14)-(2.18),

$$
\frac{\partial \eta(\tau)}{\partial \tau}=\eta^{3}(\tau) \int_{0}^{1} h\left(c(s, \tau), w(s, \tau), p(s, \tau), q(s, \tau), d(s, \tau) s^{2} d s\right)
$$

We cannot expect the solution of (2.2) - (2.16) exists for all 0 , but since we make the change of variables,
$t=\int_{0}^{\tau} \eta^{2}(s) d s$ and $\tau=\int_{0}^{t} \frac{d s}{R^{2}(s)}$, one we can prove the solution of(2.2)(2.16) exists actually for all $\tau \geq 0$.

SECTION-3 EXISTENCE OF A LOCAL SOLUTION

From the assumptions (A1)-(A4) in sec. 1 and transformation (2.1) in sce. 2
we verify the following conditions hold:
(B1) f, g and h are C^{1} - smooth functions;
(B2) gij $(\mathrm{i}, j=1,2,3)$ are $C^{1}-$ smooth functions;
(B3) p_0,q_0 andd_0 are $C^{\prime}-$ smooth functions;
(B4) $c_{0}(|x|), w_{0}(|x|) \in D p\left(B_{i}\right)$ for some $p>5$.
$\frac{\partial \sigma}{\partial n}=-V_{n}$ on $\partial \Omega(\mathrm{t}), t>0$: istence and uniqueness of solution ${ }^{[5]}$ to
$M_{0}=\left\|\left(p_{0}, q_{0}, d_{0}\right)\right\|_{L^{\infty}} ;$
$P(x, 0)=P_{0}(x), Q(x, 0)=Q_{0}(x), D(x, 0)=D_{0}(x)_{w \leq \bar{w},}|p| \leq 2 M_{0}$,
for $x \in \Omega(0)$
$|q| \leq 2 M_{0,}|a| \leq 2 M_{0,} i, j$
$B_{0}=\max \{|h(c, w, p, q, d)|: 0 \leq c \leq \bar{c}, 0 \leq w \leq \bar{w}$,
$\left.|p| \leq 2 M_{0},|q| \leq 2 M_{0},|d| \leq 2 M_{0}\right\}$.
Now given $T>0$, we introduce a metric space $(X T, d)$ as
$X_{T}=\{(\eta(\tau), c(\rho, \tau), w(\rho, \tau), p(\rho, \tau) q(\rho, \tau)$,
$d(\rho, \tau))(0 \leq \rho \leq 1,0 \leq \tau \leq T):(\eta, c, w, p, q, d)$ satisfying the following conditions(C1)-(C4)
(C1) $\eta \in C[0,1], \eta(0)=\eta_{0}$ and $1 / 2 \eta_{0} \leq \eta(\tau) \leq 2 \eta_{0}(0 \leq \tau \leq T)$;
(C2) $c \in C([0,1] \times[0, T]), c(\rho, 0)=c_{0}(\rho), c(1, \tau)=\bar{c}$ and $0 \leq c(\rho, \tau) \leq \bar{c}$ for $0 \leq \rho \leq 1,0 \leq \tau \leq T$;
(C3) $w \in C([0,1] \times[0, T]), w(\rho, 0)=w_{0}(\rho), w(1, \tau)=\bar{w}$ and $0 \leq w(\rho, \tau) \leq \bar{w}$ for $0 \leq \rho \leq 1,0 \leq \tau \leq T ;$
(C4) $p(\rho, \tau), q(\rho, \tau), d(\rho, \tau) \in C([0,1] \times[0, T])$
, $p(\rho, 0)=p_{0}(\rho), q(\rho, 0)=q_{0}(\rho)$,
$d(\rho, 0)=d_{0}(\rho)$ and $|p(\rho, \tau)| \leq 2 M_{0},|q(\rho, \tau)| \leq 2 M_{0},|d(\rho, \tau)| \leq 2 M_{0}$
for $0 \leq \rho \leq 1,0 \leq \tau \leq T$.
The metric din $X T$ is defined by
$d\left(\left(\eta_{1}, c_{1}, w_{1}, p_{1}, q_{1}, d_{1}\right),\left(\eta_{2}, c_{2}, w_{2}, p_{2}, q_{2}, d_{2}\right)\right)$
$=\left\|\eta_{1}-\eta_{2}\right\|_{L \infty}+\left\|c_{1}-c_{2}\right\|_{L \infty}+$

$$
\left\|\mathrm{w}_{1}-\mathrm{w}_{2}\right\|_{L \infty}+\left\|\mathrm{p}_{1}-\mathrm{p}_{2}\right\|_{\square \infty}+
$$

$$
\left\|\mathrm{q}_{l}-\mathrm{q}_{2}\right\|_{\square \infty}+\left\|\mathrm{d}_{l}-\mathrm{d}_{2}\right\|_{\square \infty}
$$

It is easy to see $\left(X_{T} d\right)$ is a complete metric space.
Given any $(\eta, c, w, p, q, d) \in X_{T}$, set

$$
\begin{aligned}
& u(\rho, \tau)=\frac{\eta^{2}(\tau)}{\rho} \int_{0}^{\rho} h(c(s, \tau), w(s, \tau), p(s, \tau), q(s, \tau), d(s, \tau)) s^{2} d s \\
& v(\rho, \tau)=u(\rho, \tau)-\rho u(1, \tau) \\
& \phi(\rho, \tau)=\eta^{2}(\tau) f(c(s, \tau), p(s, \tau), q(s, \tau)) \\
& \varphi(\rho, \tau)=\eta^{2}(\tau) g(w(s, \tau), p(s, \tau), q(s, \tau))
\end{aligned}
$$

Consider the following problem for ($\widetilde{\eta}, \tilde{c}, \widetilde{w}, \tilde{p}, \tilde{q}, \tilde{d})$:
$\frac{\partial \tilde{\eta}}{\partial \tau}=\widetilde{\eta}(\tau) u(1, \tau)$ for $0<\tau \leq T$,
$\widetilde{\eta}(0)=\eta_{0}$
$\frac{\partial \tilde{c}}{\partial \tau}=\frac{D_{1}}{\rho^{2}} \frac{\partial}{\partial \rho}\left(\rho^{2} \frac{\partial \tilde{\tau}}{\partial \rho}\right)+u(1, \tau) \rho \frac{\partial \tilde{\tau}}{\partial \rho}-\phi(\rho, \tau) \tilde{c}$ for $0<\rho<1,0<\tau \leq T$,
$\frac{\partial \tilde{c}}{\partial \tau}(0, \tau)=0, \tilde{c}(1, \tau)=\tilde{c}$ for $0<\tau \leq T$,
$\frac{\partial}{\partial t}(P+Q+D)+\operatorname{div}(P+Q+D) \bar{v}=\frac{1}{N}\left(P K_{B}(C)-K_{R}(D)\right) \times$

$$
(N-(P+Q+D)) \quad \text { for } x \in \Omega(\mathrm{t}), \mathrm{t}>0
$$

(כ.J)
$\frac{\partial \widetilde{\mathrm{w}}}{\partial \tau}=\frac{D_{2}}{\rho^{2}} \frac{\partial}{\partial \rho}\left(\rho^{2} \frac{\partial \widetilde{\mathrm{w}}}{\partial \rho}\right)+u(1, \tau) \rho \frac{\partial \widetilde{\mathrm{w}}}{\partial \rho}-\varphi(\rho, \tau) \widetilde{\mathrm{W}}$ for $0<\rho<1,0<\tau \leq T$,
$\frac{\partial \widetilde{\mathrm{w}}}{\partial \tau}(0, \tau)=0, \widetilde{\mathrm{w}}(1, \tau)=\widetilde{\mathrm{w}}$ for $0<\tau \leq T$,
$\widetilde{\mathrm{w}}(\rho, 0)=w_{0}(\rho)$ for $0 \leq \rho \leq 1$,
$\frac{\partial \widetilde{\mathrm{p}}}{\partial \tau}+v \frac{\partial \tilde{\mathrm{p}}}{\partial \rho}=\eta^{2}\left[g_{11}(\tilde{c}, \widetilde{w}, \tilde{p}, \tilde{q}, \tilde{d}) \tilde{p}+g_{12}(\tilde{c}, \widetilde{w}, \tilde{p}, \tilde{q}, \tilde{d}) \tilde{q}+\right.$ $\left.g_{13}(\tilde{c}, \widetilde{w}, \tilde{p}, \tilde{q}, \tilde{d}) \tilde{d}+\right]$
for $0 \leq \rho \leq 1,0<\tau \leq T$,
$\frac{\partial \widetilde{\mathrm{q}}}{\partial \tau}+v \frac{\partial \widetilde{\mathrm{q}}}{\partial \rho}=\eta^{2}\left[g_{21}(\tilde{c}, \widetilde{w}, \tilde{p}, \tilde{q}, \tilde{d}) \tilde{p}+g_{22}(\tilde{c}, \widetilde{w}, \tilde{p}, \tilde{q}, \tilde{d}) \tilde{q}\right.$
$\left.+g_{23}(\tilde{c}, \widetilde{w}, \tilde{p}, \tilde{q}, \tilde{d}) \tilde{d}+\right]$
for $0 \leq \rho \leq 1,0<\tau \leq T$,
$\frac{\partial \widetilde{\mathrm{d}}}{\partial \tau}+v \frac{\partial \widetilde{\mathrm{~d}}}{\partial \rho}=\eta^{2}\left[g_{31}(\tilde{c}, \widetilde{w}, \tilde{p}, \tilde{q}, \tilde{d}) \tilde{p}+g_{32}(\tilde{c}, \widetilde{w}, \tilde{p}, \tilde{q}, \tilde{d}) \tilde{q}\right.$
$\left.+g_{33}(\tilde{c}, \widetilde{w}, \tilde{p}, \tilde{q}, \tilde{d}) \tilde{d}+\right]$
for $0 \leq \rho \leq 1,0<\tau \leq T$
$\tilde{p}(\rho, 0)=p_{0}(\rho), \tilde{q}(\rho, 0)=q_{0}(\rho), \tilde{d}(\rho, 0)=d_{0}(\rho)$, for $0 \leq \rho \leq 1$.
We define a mapping $F:(\eta, \mathrm{c}, \mathrm{w}, \mathrm{p}, \mathrm{q}, \mathrm{d}) \rightarrow(\widetilde{\eta}, \tilde{c}, \widetilde{w}, \tilde{p}, \tilde{q}, \tilde{d})$.
Next to prove that F is a contraction mapping from X_{T} to X_{T} provided T is sufficiently small.

STEP 1:

F maps X_{T} into itself. It is obvious that (4.1)-(4.2) has a unique solution
$\tilde{\eta} \in C^{1}[0, T]$ and
$g_{11}(C, W, P, Q, D)=\left[K_{B}(C)-K_{Q}(C)-K_{A}(C)-t_{1} G_{1}(W)\right]-\frac{1}{N}\left[K_{B}(C) P-K_{R} D\right]$,
$g_{12}(C, W, P, Q, D)=K_{P}(C)$,
(for $0 \leq \rho \leq 1, \tau>0$,
From the fact that $\|h(c(\rho, \tau), w(\rho, \tau), p(\rho, \tau), q(\rho, \tau), d(\rho, \tau))\|_{L \infty} \leq B_{0,}$
$\frac{1}{2} \eta_{0}<\eta(\tau) \leq 2 \eta_{0}$, and $\|u(1, \tau)\|_{L_{\infty}} \leq \frac{4}{3} B_{0} \eta_{0}^{2}$, then
$\eta_{0} \exp \left\{\frac{-4}{3} B_{0} \eta_{0}^{2} T\right\} \leq \tilde{\eta}(\tau) \leq \eta_{0} \exp \left\{\frac{4}{3} B_{0} \eta_{0}^{2} T\right\}$ or $\quad 0 \leq \tau \leq T$.
So if T is sufficiently small such that $\exp \left\{\frac{4}{3} B_{0} \eta_{0}^{2} T\right\} \leq 2$
$\frac{1}{2} \eta_{0} \leq \tilde{\eta} \leq 2 \eta_{0} \quad$ that implies η satisfies the condition (C1). Next we consider (3.3)-(3.5) and (3.6)-(3.8).

Since $c_{0}(|\mathrm{x}|), w_{0}(|\mathrm{x}|) \in \operatorname{Dp}\left(B_{1}\right)$ for some $\left.p>5,3.3\right)$-(3.5) and (3.6)-(3.8) has a $\tilde{c}(|x|, \tau) \in W_{p}^{2,1}\left(Q_{T}\right)$ unique solution and $\widetilde{\mathbf{w}}(|x|, \tau) \in W_{p}^{2,1}\left(Q_{T}\right)$ respectively. According to the embedding theorem $w_{p}^{2.1}\left(Q_{T}\right) \rightarrow C^{\lambda \frac{\lambda}{2}}\left(\bar{Q}_{T}\right)$ where $\lambda=2-\frac{5}{p}$:hen $\tilde{c}(|x|, \tau), \widetilde{\mathrm{w}}(|x|, \tau) \in$
$C([0,1] \times[0,1])$. By applying the maximum principle $0 \leq \tilde{\mathrm{C}} \leq \bar{C}$ and $0 \leq \widetilde{W} \leq \bar{W}$. Furthermore, by (3.4), the embedding, $W_{p}^{2,1}\left(Q_{T}\right) \rightarrow C^{1+\lambda, \frac{1+\lambda}{2}}\left(\bar{Q}_{T}\right)$. With $\lambda=1-\frac{5}{p}$ then $\left\|\frac{\partial \bar{c}}{\partial \rho}\right\|_{L^{\infty}} \leq A(T),\left\|\frac{\partial \tilde{w}}{\partial \rho}\right\|_{L^{\infty}} \leq A(T)$. From above results, we know ćsatisfies the condition (C2) and \tilde{w} satisfies the condition (C3). Finally we consider (4.9)-(4.12). Since $v(\rho, \tau), \quad \tilde{c}(\rho, \tau), \widetilde{w}(\rho, \tau)$ are continuously differentiable, then from Lemma 3.3 we obtain that if we take T small enough, (3.9)-(3.12) has a unique classical solution
satisfying $(\tilde{p}, \tilde{q}, \tilde{d}) \in C^{1}([0,1] \times[0,1])$
$|\tilde{p}| \leq 2 M_{0},|\tilde{q}| \leq 2 M_{0},|\tilde{d}| \leq 2 M_{0}$, for $\left.0 \leq \rho \leq 1,0 \leq \tau \leq T .3 .15\right)$
Furthermore, ifT is small enough, $\left\|\left(\frac{\partial \tilde{p}}{\partial \rho}, \frac{\partial \tilde{q}}{\partial \rho}, \frac{\partial \tilde{d}}{\partial \rho}\right)\right\|_{L^{\infty}} \leq 2 M_{1}$ for
$0 \leq \rho \leq 1,0 \leq \tau \leq T$ where $\quad M_{1}=\left\|p_{0}^{\prime}, q_{0}^{\prime}, d_{0}^{\prime}\right\|_{L^{\infty}}$ ere implies p, q, and d satisfy the condition (C4).

Now for a sufficiently smallT, $\mathrm{F}: \rightarrow \mathrm{X}_{T} \rightarrow \mathrm{X}_{T}$ is well defined.
To obtain the desired result we need to prove $\mathrm{F}: \rightarrow \mathrm{X}_{T} \rightarrow \mathrm{X}_{T}$ is a contraction mapping ifT is further small enough.

STEP 2:

Let $\left(\eta_{i}, c_{i}, \mathrm{w}_{i}, \mathrm{p}_{i}, q, \mathrm{~d}_{i}\right) \in X_{T}(i=1,2)$ set
$\mathrm{u}_{i}(\rho, \tau)=\frac{\eta_{i}^{2}(\tau)}{\rho} \int_{0}^{\rho} h\left(c_{i}(s, \tau), w_{i}(s, \tau), p_{i}(s, \tau), q_{i}(s, \tau), d_{i}(s, \tau)\right) s^{2} d s$,
$\mathrm{v}_{i}(\rho, \tau)=\mathrm{u}_{i}(\rho, \tau)-\rho \mathrm{u}_{i}(1, \tau)$,
$\left(\tilde{\mathrm{\eta}}_{i}, \tilde{\mathrm{c}}_{i}, \widetilde{\mathrm{w}}_{i}, \tilde{\mathrm{p}}_{i}, \tilde{\mathrm{q}}_{i}, \tilde{\mathrm{~d}}_{i}\right)=F\left(\eta_{i}, c_{i}, w_{i}, p_{i}, q_{i}, d_{i}\right)$
$d=d\left(\left(\eta_{1}, c_{1}, w_{1}, p_{1}, q_{1}, d_{1}\right),\left(\eta_{2}, c_{2}, w_{2}, p_{2}, q_{2}, d_{2}\right)\right)$.
From $\left\|h\left(c_{i}(\rho, \tau), w_{i}(\rho, \tau), p_{i}(\rho, \tau), q_{i}(\rho, \tau), d_{i}(\rho, \tau)\right)\right\|_{L^{\infty}} \leq B_{0}$ and $\frac{1}{2} \eta_{0}<\eta_{i}(\tau) \leq 2 \eta_{0}$, easily calculate $\left|u_{1}(\rho, \tau)-u_{2}(\rho, \tau)\right| \leq A(T) d$. (3.17)

Then by (3.13) $\left\|\tilde{\eta}_{1}-\tilde{\eta}_{2}\right\|_{L^{\infty}} \leq \max _{0 \leq \tau \leq T}\left|\tilde{\eta}_{1}(\tau)-\widetilde{\eta}_{2}(\tau)\right| \leq T A(T) d$.(3.18)
Next, let $\tilde{c}_{*}=\tilde{c}_{1}-\tilde{c}_{2}$ and $w_{*}=\widetilde{w}_{1}-\widetilde{w}_{2}$, we have
$\frac{\partial \tilde{c}_{s}}{\partial \tau}=\frac{D_{1}}{\rho^{2}} \frac{\partial}{\partial \rho}\left(\rho^{2} \frac{\partial \tilde{c}_{*}}{\partial \rho}\right)+u_{1}(\rho, \tau) \rho \frac{\partial \tilde{c}_{*}}{\partial \rho}-\phi(\rho, \tau) \tilde{c}_{*}+\mathrm{F}(\rho, \tau)$
for $0<\rho<1,0<\tau \leq T$,
$\frac{\partial \tilde{c}_{*}}{\partial \tau}(0, \tau)=0, \tilde{c}_{*}(1, \tau)=0$ for $0 \leq \tau \leq T$,
$\tilde{c}_{*}(\rho, 0)=0$ for $0 \leq \rho \leq 1$,
$\frac{\partial \widetilde{w}_{*}}{\partial \tau}=\frac{D_{2}}{\rho^{2}} \frac{\partial}{\partial \rho}\left(\rho^{2} \frac{\partial \widetilde{w}_{*}}{\partial \rho}\right)+u_{1}(\rho, \tau) \rho \frac{\partial \widetilde{w}_{*}}{\partial \rho}-\phi(\rho, \tau) \widetilde{w}_{*}+\mathrm{F}(\rho, \tau)$
for $0<\rho<1,0<\tau \leq T$,
$\frac{\partial \widetilde{w}_{*}}{\partial \tau}(0, \tau)=0, \widetilde{w}_{*}(1, \tau)=0$ for $0 \leq \tau \leq T$,
where
$\phi(\rho, \tau)=\eta_{1}^{2}(\tau) f\left(c_{1}(s, \tau), p_{1}(s, \tau), q_{1}(s, \tau)\right)$,
$\varphi(\rho, \tau)=\eta_{1}^{2}(\tau) g\left(w_{1}(s, \tau), p_{1}(s, \tau), q_{1}(s, \tau)\right)$,
$F(\rho, \tau)=\left[u_{1}(1, \tau)-u_{2}(1, \tau)\right] \rho \frac{\partial \bar{c}_{2}}{\partial \rho}+\left[\eta_{2}^{2}(\tau) f\left(c_{2}, p_{2}, q_{2}\right)-\eta_{1}^{2}(\tau) f\left(c_{1}, p, q_{1}\right)\right] \tilde{c}_{2}$,
$G(\rho, \tau)=\left[u_{1}(1, \tau)-u_{2}(1, \tau)\right] \rho \frac{\partial \widetilde{w}_{2}}{\partial \rho}+\left[\eta_{2}^{2}(\tau) g\left(w_{2}, p_{2}, q_{2}\right)-\eta_{1}^{2}(\tau) g\left(w_{1}, p, q_{1}\right)\right] \widetilde{w}_{2}$,

Asfor \tilde{c}, we know $\left\|\frac{\partial \tilde{c}_{2}}{\partial \rho}\right\|_{L^{\infty}} \leq A(T)$ and $0 \leq \tilde{c}_{2}(\rho, \tau) \leq \bar{c}, \mathrm{~b}$ maximum principle note that fis continuously differentiable and η_{i}, p_{i}, q_{i} are bounded, so we can deduce that
$\|F\|_{L^{\infty}} \leq A(T)\left\|u_{1}-u_{2}\right\|_{L^{\infty}}+\left\|\eta_{2}^{2} f\left(c_{2}, p_{2}, q_{2}\right)-\eta_{1}^{2} f\left(c_{1}, p, q_{1}\right)\right\|_{L^{\infty}} \leq A(T) d$.
$\left\|\tilde{c}_{1}-\tilde{c}_{2}\right\|_{L^{\infty}}=\|\tilde{c}\|_{L^{\infty}} \leq T\|F\|_{L^{\infty}} \leq T A(T) d$.
Similarly forw, we obtain
$\|G\|_{L^{\infty}} \leq A(T)\left\|u_{1}-u_{2}\right\|_{L^{\infty}}+A(T) d \leq A(T) d$.

Again we obtain
$\left\|\widetilde{w}_{1}-\widetilde{w}_{2}\right\|_{L^{\infty}}=\left\|\widetilde{w}_{*}\right\|_{L^{\infty}} \leq T\|G\|_{L^{\infty}} \leq T A(T) d$.
Finally, letting $\tilde{p}^{*}=\tilde{p}_{1}-\tilde{p}_{2}, \tilde{q^{*}}=\tilde{q_{1}}-\tilde{q_{2}}, \tilde{d^{*}}=\tilde{d_{1}}-\tilde{d}_{2}$, then result is
$\frac{\partial \tilde{q}_{*}}{\partial \tau}+v_{1} \frac{\partial \tilde{q}_{*}}{\partial \rho}=\lambda_{21}(\rho, \tau) \tilde{p}_{*}+\lambda_{22}(\rho, \tau) \tilde{q}_{*}+\lambda_{23}(\rho, \tau) \tilde{d}_{*}+F_{2}(\rho, \tau)$
for $0 \leq \rho \leq 1,0<\tau \leq T$,
$\frac{\partial \tilde{d}_{*}}{\partial \tau}+v_{1} \frac{\partial \tilde{d}_{*}}{\partial \rho}=\lambda_{31}(\rho, \tau) \tilde{p}_{*}+\lambda_{32}(\rho, \tau) \tilde{q}_{*}+\lambda_{33}(\rho, \tau) \tilde{d}_{*}+F_{3}(\rho, \tau)$
for $0 \leq \rho \leq 1,0<\tau \leq T$,
$\tilde{p}_{*}(\rho, 0)=0, \tilde{q}_{*}(\rho, 0)=0, \tilde{d}_{*}(\rho, 0)=0$, for $0 \leq \rho \leq 1$
where $\lambda_{i j}=\eta_{1}^{2}(\tau) g_{i j}\left(\tilde{c}_{1}, \widetilde{w}_{1}, \tilde{p}_{1}, \tilde{q}_{1}, \tilde{d}_{1}\right)(\mathrm{i} . \mathrm{j}=1,2,3)$,
$F_{i}(\rho, \tau)=\left(v_{2}-v_{1}\right) \frac{\partial \tilde{\xi}_{i}}{\partial \rho}+\sum_{j=1}^{3}\binom{\eta_{1}^{2} g_{i j}\left(\tilde{c}_{1}, \widetilde{w}_{1}, \tilde{p}_{1}, \tilde{q}_{1}, \tilde{d}_{1}\right)}{-\eta_{2}^{2} g_{i j}\left(\tilde{c}_{2}, \widetilde{w}_{2}, \tilde{p}_{2}, \tilde{q}_{2}, \tilde{d}_{2}\right)} \tilde{\xi}_{j,}$
and $\tilde{\xi}_{1,}=\tilde{p}_{2}, \tilde{\xi}_{2,}=\tilde{q}_{2}, \tilde{\xi}_{3,}=\tilde{d}_{2}$. From (3.15)-(3.16) we know that
$\left\|\tilde{p}_{i}\right\|_{L^{\infty}} \leq 2 M_{0} \cdot\left\|\tilde{q}_{i}\right\|_{L^{\infty}} \leq 2 M_{0},\left\|\tilde{d}_{i}\right\|_{L^{\infty}} \leq 2 M_{0},(\mathrm{i}=1,2)$,
$\left\|\left(\frac{\partial \tilde{p}_{i}}{\partial \rho}, \frac{\partial \tilde{q}_{i}}{\partial \rho}, \frac{\partial \tilde{d}_{i}}{\partial \rho}\right)\right\|_{L^{\infty}} \leq 2 M_{1},(\mathrm{i}=1,2)$,
and since $g i j(i, j=1,2,3)$ are continuously differentiable , we deduce that
$\left\|F_{i}\right\|_{L^{\infty}} \leq A(T)\left\|v_{1}-v_{2}\right\|_{L^{\infty}}+A(T) \sum_{j=1}^{3} \| \eta_{1}^{2} g_{i j}\left(\tilde{c}_{1}, \widetilde{w}_{1}, \tilde{p}_{1}, \tilde{q}_{1}, \tilde{d}_{1}\right)$
$-\eta_{2}^{2} g_{i j}\left(\tilde{c}_{2}, \tilde{w}_{2}, \tilde{p}_{2}, \tilde{q}_{2}, \tilde{d}_{2}\right) \|_{L^{\infty}}$
$\leq A(T) \mathrm{d}, \quad \mathrm{i}=1,2,3 \quad$ It is easy to see $\lambda_{-} \mathrm{ij}(\mathrm{i}, \mathrm{j}=1,2,3)$ are bounded by a constant independent of the choice of ($\eta \mathrm{i}, \mathrm{c}_{-} \mathrm{i}, \mathrm{p}_{-} \mathrm{i}, \mathrm{q}_{-} \mathrm{i}, \mathrm{d}_{-} \mathrm{i}$) so from (3.33) we have
$\left\|\tilde{p}_{1}-\tilde{p}_{2,} \tilde{q}_{1}-\tilde{q}_{2}, \tilde{d}_{1}-\tilde{d}_{2},\right\|_{L^{\infty}}=\left\|\tilde{p}_{*}, \tilde{q}_{*}, \tilde{d}_{*}\right\|_{L^{\infty}} \leq T A(T) \mathrm{d}$.
By (3.16),(3.26).(3.28) and (3.34)
$d\left(\tilde{\mathfrak{\eta}}_{1}, \tilde{c}_{1}, \widetilde{w}_{1}, \tilde{p}_{1}, \tilde{q}_{1}, \tilde{d}_{1}\right),\left(\tilde{\mathfrak{n}}_{2}, \tilde{c}_{2}, \widetilde{w}_{2}, \tilde{p}_{2}, \tilde{q}_{2}, \tilde{d}_{2}\right) \leq T A(T)<1$,
then F is a contraction mapping from X_{T} into X_{T}.
According to Banach fixed point theorem, ifT is small enough then F has a unique fixed point ($\eta, \mathrm{c}, \mathrm{w}, \mathrm{p}, \mathrm{q}, \mathrm{d}$) for $0 \leq \tau \leq \mathrm{T}$. By the definition of the mapping $F(, c, w, p, q, d)$ is the unique solution of the problem (2.2) - (2.16) for for $0 \leq \tau \leq T$

THEOREM 4.1:

Under the assumptions (A1) - (A4) and initial condition (1.30), the free boundary problem (1.15)-(1.27) has a unique solution (R, C, W, P, Q, D) for all

In addition, for any $T>0, R(t) \in C^{1}[0, T], C, W \in W_{P}^{2,1}\left(Q_{T}{ }^{R}\right)$ and $P, Q, D \in C^{1}$ $\left(Q_{T}{ }^{R}\right)$
Furthermore, the following estimates hold:
$R(t)>0$ for >0,
$0<C(r, t) \leq \bar{C}, 0<W(r, t) \leq \bar{W}$ for $0 \leq r \leq R(t), \mathrm{t} \geq 0$,
$P(r, t) \geq 0, Q(r, t) \geq 0, D(r, t) \geq 0$ for $0 \leq r \leq R(t), \mathrm{t} \geq 0$,
$P(r, t)+Q(r, t)+D(r, t)=N$ for $0 \leq r \leq R(t), \mathrm{t} \geq 0$
there exists $T>0$ depending only on
$\left\|c_{0}(|x|)\right\|_{D p\left(B_{R_{0}}\right)},\left\|w_{0}(|x|)\right\|_{D p\left(B_{R_{0}}\right)},\left\|p_{0}, q_{0}, d_{0},\right\|_{L^{\infty},}\left\|\left(p_{0}^{\prime}, q_{0}^{\prime}, d_{0}^{\prime}\right)\right\|_{L^{\infty}}$,
such that the problem (2.2)-(2.16) has a unique solution for $0 \leq \tau \leq \mathrm{T}$.

ACKNOWLEDGEMENT:

The author acknowledges the financial support rendered to the project by UGC-SERO Folio No:-MRP 5004/14.

REFERENCES:

S. Cui and X.Wei, Acta. Math. Appl. Sinica, English Series., Vol.21, No.4(2005), 597-614. H.M. Byrne and M.A.J.Chaplian, Math, Biosci., 135 (1996),151-181.
S.Cui, SIAM J. Math Anal., 40(2008), No.4, 1692-1724.
S.Cui; J.Diff.equa., 246 (2009), 1845-1882.
S.Cui and J.Esher, Arch. Rat, Mech. Anal., 191(2009), 173-193.
S. Cui and A. Friedman, Trans, Amer. Math. Soc., 355 (2003). 3537-3590.

Robert C. Mc Owen Northeastern University, II Edition, Pearson Education. A. Friedman and B. Hu; J. Diff. Equa., 227 (2006), 598-639. H. Greenspan; Stud. Appl. Math, 51 (1972), 317-340.
. J.P.Ward and J.R. King; J.Math Appl. Med Biol. 14(1):(1997). 39-69.
A. Pazy, Springer-Verlag, New York, Berlin Heidelberg Tokyo.
. M.D. Raisinghania, S. Chand and Company Ltd.
13. William E. Boyce and Richord C. Diprima, JohnWiley and Sons, Inc.
14. James R. Munkres, II Edition Prentice Hall of India private limited, New Delhi, 2005.
15. S.G.DEO, V.Lakshmikantham, V. Raghavendra II edition, Tata McGraw-Hill publishing company Limited-New Delhi.

