
1-Introduction to Resampling:
It is often relatively simple to plan a statistic that measures the 
property of interest, but is almost always difficult or impossible to 
determine the distribution of that statistic. The classical statistical 
methods concentrated mainly on the statistical properties of the 
estimators that have a simple closed form and which can be 
analysed mathematically. Except for a few important but simple 
statistics, these methods involve often unrealistic model 
assumptions. These limitations have been overcome in the last two 
decades of the 20th Century with advances in electronic computers. 
A class of computationally intensive procedures known as 
resampling methods provide inference on a wide range of statistics 
under very general conditions. Resampling methods involve 
constructing hypothetical populations derived from the 
observations, each of which can be analysed in the same way to see 
howthe statistics depend on possible random variations in the 
observations. Resampling the original data preserves whatever 
distributions are truly present, including selection effects such as 

[3]truncation and censoring .

Perhaps the half-sample method is the oldest resampling method, 
where one repeatedly chooses at random half of the data points, 
and estimates the statistic foreach resample. The inference on the 
parameter can be based on the histogram of there sampled 
statistics. It was used by Mahalanobisin 1946 under the name 
interpenetrating samples. An important variant is the Quenouille-
Tukey jack-knife method For a dataset with n data points, one 
constructs exactly n hypothetical datasets each with n-1 points, 
each one omitting a different point. For the main tasks in statistical 
inference hypothesis testing and con�dence intervals - the 
appropriate resampling test often is immediately obvious. For 
example, if one wishes to inquire whether baseball hitters exhibit 
behavior that �ts the notion of a slump, one may simply produce hits 
and outs with a random-number generator adjusted to the batting 
average of aplayer, and then compare the number of simulated 
consecutive sequences of either hits or outs with the observed 
numbers for the player. The procedure is also straightforward for 
such binomial situations as the Arbuthnot birth-sex case.

2. Re-sampling Procedures: 
Re-sampling is done to test model statistics. There are several 
resampling methods available like bootstrapping, jackkni�ng, 
permutation tests and cross validation. Bootstrapping is a method 
of taking samples randomly with replacement while ensuring the 
sample statistics are in conformity with super set.

Resampling is useful when we do not have enough real data. It can 
also be used when we do not have any data at all, only some 
understanding of some event. In later case we can generate enough 
data which in theory would be similar to what we would expect in 

[8]practice if we had data .

Resampling has its limitations; you cannot keep on generating 
additional data. Generating a lot of data in resampling can be time 
consuming. While resampling and Monte Carlo simulation are 
mostly same, in Monte Carlo simulation you can restrict number of 
samples to generate and also in this you need to have at least some 
real data.

Using resampling methods, “you're trying to get something for 
nothing. You use the same numbers over and over again until you 
get an answer that you can't get any other way. In order to do that, 
you have to assume something, and you may live to regret that 
hidden assumption later on”.

Ÿ A method of Resampling: creating many samples from a single 
sample

Ÿ Generally, resampling is done with replacement
Ÿ Used to develop a sampling distribution of statistics such as 

mean, median, proportion, others.

Re-sampling is any of a variety of methods for doing one of the 
following:
Ÿ Estimating the precision of sample statistics (medians, 

variances, percentiles) by using subsets of available data 
(jackkni�ng) or drawing randomly with replacement from a set 
of data points (bootstrapping)

Ÿ Exchanging labels on data points when performing signi�cance 
tests (permutation tests, also called exact tests, randomization 
tests, or re-randomization tests)

Ÿ Validating models by using random subsets (bootstrapping, 
cross validation)

2.1. Jackknife Method:
This method is also known as the Quenouille-Tukey Jackknife; this 
tool was invented by Maurice Quenouille (1949) and later 
developed by John W. Tukey (1958). As the father of EDA, John Tukey 
attempted to use Jackknife to explore how a model is in�uenced by 
subsets of observations when outliers are present. The name 
"Jackknife" was coined by Tukey to imply that the method is an all-
purpose statistical tool.

The jackknife or “leave one out" procedure is a crossvalidation 
technique �rst developed by Quenouille to estimate the bias of an 
estimator. John Tukey then expanded the use of the jackknife to 
include variance estimation and tailored the name of jackknife 
because like a jackknife - a pocket knife akin to a Swiss army knife 
and typically used by boy scouts - this technique can be used as a 
“quick and dirty" replacement tool for a lot of more sophisticated 
and speci�c tools. Curiously, despite its remarkable in�uence on the 
statistical community, the seminal work of Tukey is available only 
from an abstract (which does not even mention the name of 
jackknife) and from an almost impossible to and unpublished note 
(although some of this note found its way into Tukey's complete 
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work).
The jackknife estimation of a parameter is an iterative process. First 
the parameter is estimated from the whole sample. Then each 
element is, in turn, dropped from the sample and the parameter of 
interest is estimated from this smaller sample. This estimation is 
called a partial estimate (or also a jackknife replication). A pseudo-
value is then computed as the difference between the whole sample 
estimate and the partial estimate. These pseudo-values reduce the 
bias ofthe partial estimate (because the bias is eliminated by the 
subtraction betweenthe two estimates). The pseudo-values are 
then used in lieu of the original valuesto estimate the parameter of 
interest and their standard deviation is used to estimate the 
parameter standard error which can then be used for null 
hypothesistesting and for computing con�dence intervals. The 
jackknife is strongly related tothe bootstrap (i.e., the jackknife is 
often a linear approximation of the bootstrap)which is currently the 
m a i n  t e c h n i q u e  f o r  c o m p u t a t i o n a l  e s t i m a t i o n  o f 
populationparameters.

As a potential source of confusion, a somewhat different (but 
related) method,also called jackknife is used to evaluate the quality 
of the prediction of computational models built to predict the value 
of dependent variable(s) from a set o�ndependent variable(s). Such 
models can originate, for example, from neural networks, machine 
learning, genetic algorithms, statistical learning models, or 
anyother multivariate analysis technique. These models typically 
use a very largenumber of parameters (frequently more parameters 
than observations) and aretherefore highly prone to over�tting (i.e., 
to be able to perfectly predict the datawithin the sample because of 
the large number of parameters, but being poorlyable to predict 
new observations). In general, these models are too complex to 
beanalyzed by current analytical techniques and therefore the 
effect of over-�tting is difficult to evaluate directly. The jackknife can 
be used to estimate the actual predictive power of such models by 
predicting the dependent variable values of eachobservation as if 
this observation were a new observation. In order to do so, 
thepredicted value(s) of each observation is (are) obtained from the 
model built onthe sample of observations minus the observation to 
be predicted. The jackknife,in this context, is a procedure which is 
used to obtain an unbiased prediction (i.e.,a random effect) and to 
minimize the risk of over-�tting.

2.2. Generating Jack-knife Samples:
The Jack-knife samples are computed by leaving out one 
observation xi from x = (x , x ,··,x ) at a time:1 2 n

x  = (x , x , · · · , x , x , · · · , x )(I) 1 2 i−1 i+1 n

Ÿ The dimension of the jack-knife sample x(I) is m = n − 1 .
Ÿ n different Jack-knife samples : {x(I) }i=1···n. 
Ÿ No sampling method needed to compute the n jack-knife 

samples.

2.3. Jackknife Replications:
thThe i jack-knife replication     of the statistic    = s(x) is(i)

 = s(x ),    =1,2, ….n          (1)        (i) (I)

Jackknife replication of the mean,  

2.4. Assumptions of the Jack-knife: 
Although the jackknife makes no assumptions about the shape of 
the underlyingprobability distribution, it requires that the 
observations are independent of eachother. Technically, the 
o b s e r v a t i o n s  a r e  a s s u m e d  t o  b e  i n d e p e n d e n t  a n d 
identicallydistributed (i.e., in statistical jargon: “i.i.d.”). This means 

that the jackknife isnot, in general, an appropriate tool for time 
series data. When the independenceassumption is violated, the 
jackknife underestimates the variance in the datasetwhich makes 
the data look more reliable than they actually are.

Because the jackknife eliminates the bias by subtraction (which is a 
linear operation), it works correctly only for statistics which are 
linear functions of theparameters or the data, and whose 
distribution is continuous or at least “smooth enough” to be 
considered as such. In some cases, linearity can be achieved by 
transforming the statistics (e.g., using a Fisher Z-transform for 
correlations, or a logarithm transform for standard deviations), but 
some non-linear or non-continuousstatistics, such as the median, 
will give very poor results with the jackknife nomatter what 

[14]transformation is used .

2.5. Advantages: 
Ÿ The jackknife can be used to estimate standard errors in a non-

parametric way.
Ÿ The jackknife can also be used to obtain nonparametric 

[21]estimates of bias .

2.6. Bias estimation:
The jackknife was originally developed by Quenouille as a 
nonparametric way to estimate and reduce the bias of an estimator 
of a population parameter. The bias of an estimator is de�ned as the 
difference between the expected value of this estimator and the 
true value of the population parameter. So formally, the bias, 
denoted B, of an estimation T of the parameter θ is de�ned as

B = E{T} – θ                (2)

with E{T} being the expected value of T.

The jackknife estimate of the bias is computed by replacing the 
expected value of the estimator (i.e., E{T}) by the biased estimator 
(i.e., T) and by replacing the parameter (i.e., θ) by the “unbiased” 
jackknife estimator (i.e., T.). Speci�cally, the jackknife estimator of 

[14]the bias, denoted B  is computed as :jack

B  = T – T*               (3)jack

2.7 Jackknife estimate of the Standard Error:
Compute the n jackknife subsamples x , · · · , x  from x.(1) (n)

Evaluate the n jackknife replications    = s(x ).(i) (I)

The jackknife estimate of the standard error is de�ned as below,

(4)

2.8. The Jackknife estimate of Variance:
Tukey (1958) suggested how the recomputed statistics  could also   (i)

provide a non-parametric estimate of variance. Let

2Var = E [    (X ,X ,,….X ) – E    ]                                                    (5)F 1 2 n F

Whereas E indicates expectation with X , X , …..X  ~ F, F an unknown F 1 2 n

probability distribution on some space χ.

In general, 'E ' means that all random variables involved in the F

expectation are independently distributed according to F.

Tukey's formula for estimating Variance is 

(6)
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We will often be more interested in standard deviations than 
variances, since the standard deviation relates directly to accuracy 
statements about   , in which case we will use the notation

Considerable effort has gone into verifying, and in some cases 
[6]diversifying, the usefulness of        as an estimate of var . 

2.9. Jackknife Con�dence Intervals:
The jack-knife suggests the following approach to constructing 

 [14]con�dence intervals

(7)

Let    n(X) =   �n(X1, X2, ……,Xn)be an estimator de�ned for samples 
X = (X1, X2, ……, Xn). The ithpseudo value of   �n(X) is 

P (X) = n∅ (X , X , ……,X ) – (n-1) ∅ ((X , X , ……, X ) )  (8)si n 1 2 n n-1 1 2 n [I]

In the above equation, X  means the sample X = (X , X , ……,X ) with [i] 1 2 n

the ith value X  deleted from the sample, so that X  is a sample of size i [i]

n-1 

P (X) = ∅ (X)+ (n-1) (∅ (X) - ∅  (X ))           (9)si n n n-1 [i]

So that psi(X) can be viewed as a bias-corrected version of ∅ (X) n

determined by the trend in the estimators ∅ (X) from ∅ (X ) to n n-1 [i]

∅ (X).n

The basic jack-knife recipe is to treat the pseudovalues ps (X) as if i

they were independent random variables with mean θ. One can 
then obtain con�dence intervals and carry out statistical tests using 
the Central Limit Theorem.

Speci�cally, let

Be the mean and sample variance of the pseudovalues. The sample 
[15]mean ps(X) was Quenouille's (1949) bias-corrected  version of   

(X). The jack-knife 95% con�dence interval for θ is     n

2.11. Jackkni�ng Linear Regression Model:
One of the most important and frequent types of statistical analysis 
is regression analysis, in which we study the effects of explanatory 
variables on a response variable. The use of the jackknife and 
bootstrap to estimate the sampling distribution of the parameter 
estimates in linear regression model was �rst proposed by Efron 
(1979) and further developed by Freedman (1981); Wu (1986). There 
has been considerable interest in recent years in the use of the 
jackknife and bootstrap in the regression context. In this study, we 
focus on the accuracy of the jackknife and bootstrap resampling 
methods in estimating the distribution of the regression parameters 
through different sample sizes and different bootstrap replications.

For the linear regression model

Y = Xβ + e                                                                                                               (12)

where Y denotes the n×1 vector of the response, X = (x , x  ,..., x  ) is 1 2 k

the matrix of regressors with n × k, and e is an n×1 vector of error 
2 [22]which has normal distribution with zero mean and variance σ . e

The least squares estimator is given by

   ols −1 = (X′X) X′Y

   olsThe variance Covariance matrix of   is 

If β is estimated by  , then θ is estimated by  = g( ), with respective    

jackknife values  = g( ). The jackknife estimation of the variance and   I

bias of the  = g(  ), delete the pair (yi , x′i ), (i =1,2,..., n) and calculate   ols ols

(J), the least squares estimate of θ based on the rest of the data set   ols
[23]. The estimation of the   , bias and variance with pseudo-values are,J

[24]Respectively, where the    is the pseudo value  and equals to Ji

(15)

The following are the steps of jackkni�ng linear regression model 
[25].

1. Draw n sized sample from population randomly and label the 
elements of the vector wi = (yi ,xji)′.

2. Delete the �rst row of the vector wi = (yi ,xji)′ and label the 
remaining n −1 sized observation sets and estimate the ols 
regression coefficients    from w . Then, omit second row of the J1 1

vector wi = (y  , x )′ after that bring back the deleted �rst row, i ji

label remaining n-1 sized observation sets and estimate the ols 
regression coefficients     from w . Similarly, omit each one of J2 2

the n observation sets and estimate the regression coefficients 
as     alternately, where     is jackknife regression coefficient Ji Ji

vector estimated after deleting of ithobservation set from w .i
3. Calculate the jackknife regression coefficient, bias, and 

standard error for each coefficient from above mentioned 
equations.

3. Introduction to Data:
Data was collected through a pilot survey on Hybrid Jowar Crop on 
yield and biometrical characters. The biometrical characters were 
average plant population (PP), plant height (PH), average number of 
green leaves (NGL) and yield (kg/plot).

4. Data Analysis:
[5]The data looks as below ; in the data we have 4 variables with 46 

records. In this paper we have used SAS software for data analysis.

Fitting Regression model for the original data.

The regression results are as follows,

In our model the R squared value is 0.39, which means that 
approximately 39% of variation can be explained by our model, in 
other words 39% of variation can be explained by those 
independent variables which we included in our regression model.
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Analysis of Variance
Source DF Sum of

Squares
Mean
Square

F Value Pr> F

Model 3 27.74654 9.24885 8.67 0.0001
Error 42 44.80696 1.06683
Corrected Total 45 72.55350

Root MSE 1.03288 R-Square 0.3824
Dependent Mean 2.32978 Adj R-Sq 0.3383
CoeffVar 44.33357



From the below scatter plot, we can observe that the dependent 
variable is moderately correlated with all other independent 
variables.

Generating Jack-knife samples:
Now we will generate (n-1=46-1) jack-knife samples. That is we will 
get 45 jack-knife samples and each sample will have 45 
observations.

Dataorigjack; /*create a new data set which contains observation */
set data1 end=eof; /* numbers 1 to &nobs (no. obs in data set) */
obsnum=_n_;
if thencalleof symput( , put(obsnum, ));'nobs' 2.
run;

/* GeneratingJackknife samples*/

%macrojackdata; /* use macro for %do processing utility */
Datajackdata;
set
%do %toi= &nobs; 1 /* do loop to create all samples */
origjack (in = in&i
where=(obsnum ne &i)) /* remove a different value each time */
%end;;
%do %toi= &nobs;1
I�n&i then repeat=&i; /* add repeat number for each sample */
%end;
run;
%mend;
%jackdata;

Performing Regression analysis separately for each jack-knife 
sample.
/* Performing Regression Analysis for generated Jackknife 
samples*/

Odsoutput whereFitStatistics = t (  = (label2 = ));"R-Square"
Odshtml;
Odsgraphicson;
Procregdata = jackdata;

by repeat;
modelyld = pp phngl ;
run;
quit;
odshtmlclose;
odsgraphicsoff;

data t1;
set t;
  r2 = cvalue2 + ;0
run;

The below is the sample output for each jack-knife sample.

The REG Procedure
Model: MODEL1
Dependent Variable: yld
repeat=1

The REG Procedure
Model: MODEL1
Dependent Variable: yld
repeat=1

Plot for Regressors Vs Residuals:
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Parameter Estimates
Variable DF Parameter

Estimate
Standard
Error

t Value Pr> |t|

Intercept 1 -1.13798 0.81766 -1.39 0.1713
Pp 1 0.01041 0.00487 2.14 0.0385 *
Ph 1 2.31100 0.71255 3.24 0.0023 *
Ngl 1 0.14797 0.09260 1.60 0.1175

Number of Observations Read 45
Number of Observations Used 45

Analysis of Variance
Source DF Sum of

Squares
Mean
Square

F Value Pr> F

Model 3 27.82166 9.27389 8.50 0.0002
Error 41 44.71174 1.09053
Corrected Total 44 72.53340

Root MSE 1.04428 R-Square 0.3836
Dependent Mean 2.32667 Adj R-Sq 0.3385
CoeffVar 44.88329

Parameter Estimates
Variable DF Parameter

Estimate
Standard
Error

t Value Pr> |t|

Intercept 1 -1.14333 0.82689 -1.38 0.1742
Pp 1 0.01075 0.00505 2.13 0.0396 *
Ph 1 2.29576 0.72227 3.18 0.0028 *
Ngl 1 0.14660 0.09374 1.56 0.1255



5.Con�dence Intervals:
2SAS code for calculating Con�dence intervals for estimated R  

values from 45 Jack-knife samples. 
/* Con�dence Intervals */
ODSHTML;
ODSgraphicson;
%letalphalev = .05;
Odslisting;
Procsql;
Select as&r2bar  r2,
mean(r2) - &r2bar  bias, as
  std(r2) std_err,as
&r2bar - tinv( -&alphalev/ , &rep- )*std(r2) lb,1 2 1 as
&r2bar + tinv( -&alphalev/ , &rep- )*std(r2) hb1 2 1 as
from t1;
quit; 
odshtmlclose;
odsgraphicsoff;

Con�dence intervals from the above jack-knife samples will be as 
below.

6. Conclusions:
From the above correlation plot, we can observe that the 
dependent variable is moderately correlated with all other 
independent variables.

By looking at Regression results from original data we can observe 
that, the overall model �t is signi�cant. The variables PP and PH are 
highly signi�cant variable which are having high impact for 
predicting the yield.

The �tted regression equation is,

Yield = -1.138 + 0.0104(PP) + 2.311(PH) + 0.148(NGL)

2 The coefficient of determination R values is 0.38, so it means that 
approximately 38% of variation in yield can be explained by the 
included independent variables PP, PH and NGL.

2 The coefficient of determination R value from Jack-knife methods 
2are 0.3824, this is close to original R  value (which we got from 

original data). The bias and standard error values from jack-knife 
method are lesser than the other methods as (Bootstrap method), 
indicating that Jack-knife gives better estimates than (Bootstrap 
estimation.).
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