MANUAL DESIGN OF PIER CAP AND PIER

B.K.Vishwanath

S.Sudheer

ABSTRACT

 The pier cap(deck beam) is designed as a cantilever on a pier and cap looks like a hammer. The Pier is designed for the axial dead load and live load from the slab, girders, deck beam. The pier is designed for two lane bridge loaded with IRC Class AA tracked vehicle. Foundation designed as footing for the safe load bearing in thesoil.All the elements are designed by using M25 grade concrete and Fe415grade steel. Designs are based on Working stress and Limit state method as per IRC: 21-2000 and IS: 456-2000.KEYWORDS

Design Procedure

Design of hammer head portion over circular pier for the following details
Live load:IRC Class AA Tracked vehicle
Materials: M20 grade concrete and Fe 415 steel.

1:Data

Clear projection of cantilever slab $=3750+2250-1000=5000 \mathrm{~mm}$
R.C.C posts $150 \mathrm{~mm} \times 150 \mathrm{~mm} \times 1 \mathrm{~m}$ are provided at every 1.5 m intervals.

Thickness of wearing coat $=75 \mathrm{~mm}$
Materials: M_{20} grade concrete and Fe 415 steel.
Live load is IRC class AA tracked vehicle.

2: Permissible stresses (IRC: 21):
For M_{20} grade concrete and Fe 415 steel.
$\sigma \mathrm{cb}=6.7 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{~m}=10, \quad \sigma \mathrm{st}=200 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{j}=0.91, \mathrm{Q}=0.762$.
3:Deadloadmoment

Considering one meter width of cantilever slab the dead load moment at the fixed end of the cantilever is computed considering the self weight of slab, kerb, parapet and railings.

TABLE 7.1 CALCULATIONS OF MOMENTS

S.NO	Dimensions of structural element	Load $\mathbf{(K N)}$	Lever arm (m)	Momen $\mathbf{t}(\mathbf{K N - m})$
1	Hand rails (lumps 4 m)	2	$2.75+(2.25-0.075)$ $=4.925$	9.85
2	R.c.c posts $=$ $(0.15 \times 0.15 \times 1 \times 24)$	0.54	4.925	2.6595
3	Kerb $=(2.25 \times 0.3 \times 24)$	16.2	$+2.75=3.875$	62.775
4	wearing coat $=$ $(2.75 \times 0.075 \times 24)$	4.5375	$=1.375$	6.23
5	R.C.C deck slab $=$ $(0.89 \times 5 \times 24)$	106.8	$5 / 2=2.5$	267

6	Triangular portion of hammer head (pier cap) $=\times 1.2 \times 5 \times 24$	72	$5 / 3=1.67$	120.24
7	Rectangular portion of hammer head (pier cap) $=1 \times 5 \times 24$	120	$5 / 2=2.5$	300

Total dead load moment $(\mathrm{Mg})=9.85+2.6595+62.775+6.23+$ $267+120.24+300=768.7795 \mathrm{KN}-\mathrm{m}$.

4: Live load moment

The live load is IRC class AA tracked vehicle. This is placed with its edge 1200 mm from the kerb.

Effective width of dispersion perpendicular to span is given by $b e=1.2 x+b w x$ is the distance of center to gravity of the concent rated load from the face of the cantilever support.
bw $=$ The breadth of the concentration area of the load i.e; the dimension of the track contact area over the road surface of the slab in the direction parallel to the supporting edge of the cantilever plus twice the thickness of the wearing coat or surface finish above the structural slab.
be $=1.2 \times x+b w$
$\mathrm{X}=0.1 \mathrm{~m}$
$b w=[0.85+2 \times 0.075]=1 \mathrm{~m}$.
Therefore be $=(1.2 \times 0.1)+1=1.12 \mathrm{~m}$.
Live load per meter width including impact $=(770 \times 2) / 1.12=1375 \mathrm{KN}$.
Design live load moment $(M q)=1375 \times 0.1=137.5 \mathrm{KN}-\mathrm{m}$.

5: Design moment

Design moment $=\mathrm{M}=(\mathrm{M}+\mathrm{M})=768.7795+137.5=906.2795 \mathrm{KN}-\mathrm{m}$. Factored moment $=906.2795 \times 2.1=1903.18 \mathrm{KN}-\mathrm{m}$.

6: Reinforcements

Effective depth required
$\mathrm{Qbd}^{2}=$ maximum bending moment

$$
\mathrm{d}=\sqrt{\frac{\operatorname{maxb} \cdot \mathrm{m}}{\mathrm{Q} \times \mathrm{b}}}=\sqrt{\frac{1903.18 \times 10^{6}}{0.762 \times 1000}}=1580.38 \mathrm{~mm} .
$$

Effective depth required $=2200-50=2150 \mathrm{~mm}>1580.38 \mathrm{~mm}$ Hence adopted depth is adequate.
$\mathrm{A}_{\mathrm{st}}=\frac{\text { maximum bending moment }}{\sigma s t \times j \times d}=\frac{1580.38 \times 10^{6}}{200 \times 0.91 \times 2150}=4038.79 \mathrm{~mm}^{2}=4039 \mathrm{~mm}^{2}$
Use 25 mm ø bars

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{st}}=\frac{\pi \times d^{2}}{4}=490.87 \mathrm{~mm}^{2} \\
& \text { Number of bars }=\frac{4039}{490.87}=8.22 \cong 9 \text { no. } \mathrm{s}
\end{aligned}
$$

However provided more effective more reinforcement than required.

Top reinforcement:

Provide 30 numbers of $25 \mathrm{~mm} \varnothing$ bars in 2 layers

Side reinforcement:

Provide 10 numbers of $16 \mathrm{~mm} ø$ bars on each face equally spaced.

Inclined reinforcement:

Provide 10 numbers of $16 \mathrm{~mm} ø$ bars on each face equally spaced.

Shear reinforcement:

Provide reinforcement $12 \mathrm{~mm} \varnothing$ 4-legged stirrups @ $150 \mathrm{~mm} \backslash \mathrm{cc}$.

REINFORCEMENT DETAILS IN HAMMER BED BLOCK
Live load:IRC Class AA tracked vehicle
Materials: M20 grade concrete and Fe 415 steel

1. Calculation of loads

Weight of

1. Parapet railing $=(2 \times 0.7)=1.4 \mathrm{KN} / \mathrm{m}$
2. Wearing coat $=(0.075 \times 7.5 \times 22)=12.375 \mathrm{KN}-\mathrm{m}$
3. Deck slab $=(0.89 \times 12 \times 24)=256.32 \mathrm{KN}-\mathrm{m}$
4. $\mathrm{Krebs}=(2 \times 0.3 \times 2.25 \times 1 \times 24)=32.4 \mathrm{KN}-\mathrm{m}$
5. Dead load of pier cap

The pier cap is divided into two cantilevers and one rectangular section Weight of two trapezoidal sections $=$ area \times unit weight of concrete

$$
=2 \times \frac{(1+2.2)}{2} \times 5 \times(25)=400 \mathrm{KN}-\mathrm{m}
$$

Weight of rectangular portion $=(2 \times 2.2) \times 25=110 \mathrm{KN}-\mathrm{m}$
Therefore total weight of pier cap $=400+110=510 \mathrm{KN}-\mathrm{m}$
Dead load of circular pier $=\frac{\pi \times 2^{2}}{4} \times 8.062 \times 25=633.18 \mathrm{KN}-\mathrm{m}$

Weight of IRC Class AA tracked vehicle is 700 KN

Total load $=$ dead load + live load $=1445.675+700=2145.675 \mathrm{KN}$
Total load with impact $=2145.675 \times 2=4291.35 \mathrm{KN}$

By considering dynamic effects such as wind load, longitudinal forces due to tractive effort of vehicles and longitudinal forces due
to braking of vehicles a suitable factor of safety is made
Factor of safety $=2$
Factored load $=4291.35 \times 2=8582.7 \mathrm{KN}$
Factored load Pu=8582.7 KN
If vehicle is moving away the center of the bridge moment is induced.
e is the eccentricity of the wheel load from center. $\mathrm{e}=1.1 \mathrm{~m}$

Live Isoad $=700 \times 2=1400 \mathrm{KN}$
Maximum moment $=1400 \times 1.1=1540 \mathrm{KN}$
Moment with impact $=700 \times 1.1=1400 \mathrm{KN}$
Factored moment $=1540 \times 2.2=3388 \mathrm{KN}-\mathrm{m}$
Therefore factored moment $=\mathrm{Mu}=3388 \mathrm{KN}-\mathrm{m}$

2. Non dimensional parameters

$$
\begin{aligned}
& \frac{P_{u}}{f_{c k} D^{2}}=\frac{8582.7 * 10^{2}}{20 * 2000^{2}}=0.1 \\
& \frac{M_{u}}{f_{c k} D^{3}}=\frac{3388 * 10^{6}}{20 * 2000^{3}}=0.02 \\
& \text { Ratio }\left(\frac{d}{D}\right)=\frac{60}{2000}=0.03
\end{aligned}
$$

Where D is the diameter of the circular pier $=2000 \mathrm{~mm}$ d is the clear cover $=60 \mathrm{~mm}$

By referring chart number of 55 of SP 16
Where P is the percentage of steel reinforcement
$\mathrm{P}=0.01 * 20=0.2$
Area of steel $=\frac{P * \pi * D^{2}}{400}=\frac{0.2 * \pi * 2000^{2}}{400}=6283.18 \mathrm{~mm}^{2}$
Use $25 \mathrm{~mm} \varphi$ bars
$\mathrm{a}_{\mathrm{st}}=\frac{\pi * 25^{2}}{4}=490.87 \mathrm{~mm}^{2}$
Number of numbers $=\frac{6283.18}{490.87}=12.8 \mathrm{~mm}^{2}$
However provide 32 numbers of $25 \varphi \mathrm{~mm}$ bars around the circular pier.

Using $10 \mathrm{~mm} \varphi$ lateral ties
Spacing is the least of the following

1. Least lateral dimension $=2000 \mathrm{~mm}$
2. $16 \times 25=400 \mathrm{~mm}$
3. 300 mm

Hence provide $10 \mathrm{~mm} ø$ bars of lateral ties @ $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.

PLAN OF CIRCULAR PIER

