R. Anbuselvi
 K. Kannaki*
 Associate Professor of Mathematics, ADM College for women (Autonomous), Nagapattinam,Tamilnadu, India
 Lecturer of Mathematics, Valivalam Desikar Polytechnic College, Nagapattinam Tamilnadu, India *Corresponding Author

ABSTRACT

The homogeneous cubic equation with four unknowns represented by the Diophantine equation $x^{3}+y^{3}=$ $57\left(h^{2}+3 p^{2}\right) z w^{2}$ is analyzed for its patterns of non-zero integral solutions. A few interesting properties between the solutions and special numbers are presented.

KEYWORDS : Cubic equation with four unknowns, Integral solutions.

1.INTRODUCTION

The Diophantine equations offer an unlimited field for research due to their variety [1-3]. In particular, one may refer [4-15] for cubic equations with four unknowns. This communication concerns with yet another interesting equation $x^{3}+y^{3}={ }^{57}\left(h^{2}+{ }^{3} p^{2)} z w^{2}\right.$ representing the homogeneous cubic equation with four unknowns for determining its infinitely many non-zero integral points. Also a few interesting properties are presented.

NOTATIONS:

1. $t_{m, n}$-Polygonal number of rank n with size m
2. p_{n}^{m}-Pyramidal number of rank n with size m
3. nno $_{a}$ - Gnomonic number of ranka.
4. $s o_{n}$-Stella Octangular number of rankn
5. $P r_{n}$-Pronic number of rankn
6. $C P_{m, n}$ - Centered Pyramidal number of rank n with size m.

2.METHOD OF ANALYSIS:

The cubic Diophantine equation with four unknowns to be solved for getting non-zero integral solutions is
$x^{3}+y^{3}=57\left(h^{2}+3 p^{2}\right) z w^{2}$
Introduction of the linear transformations
$x=u+v, y=u-v$ and $z=2 u$
in (1) leads to
$u^{2}+3 v^{2}=57\left(h^{2}+3 p^{2}\right) z w^{2}$

Now, we solve (3) through different methods and thus obtain different patterns of solutions to (1).

Pattern 1:

Imagine that $w=w(a, b)=a^{2}+3 b^{2}$
Where a and b are non-zero distinct integers Mark 57 as

$$
\begin{equation*}
57=\frac{(3 n+4 n i \sqrt{3})(3 n-4 n i \sqrt{3})}{n^{2}} \tag{5}
\end{equation*}
$$

using (4) and (5) in (3) and applying the way of factorization, classify $u+i \sqrt{3} v=(3 n+4 n i \sqrt{3})(h+i \sqrt{3} p)(a+i \sqrt{3} b)^{2}$

Equating the real and imaginary parts, we have

$$
\begin{aligned}
& u=h\left(3 a^{2}-24 a b-9 b^{2}\right)+p\left(-12 a^{2}-18 a b+36 b^{2}\right) \\
& v=h\left(4 a^{2}+6 a b-12 b^{2}\right)+p\left(3 a^{2}-24 a b-9 b^{2}\right)
\end{aligned}
$$

Hence in view of (2), the values of x, y, z are given by

```
x(h,p,a,b)=x=h(7\mp@subsup{a}{}{2}-18ab-21\mp@subsup{b}{}{2})+p(-9\mp@subsup{a}{}{2}-42ab+21\mp@subsup{b}{}{2})
y(h,p,a,b)=y=h(-\mp@subsup{a}{}{2}-30ab+3\mp@subsup{b}{}{2})+p(-15\mp@subsup{a}{}{2}+6ab+45\mp@subsup{b}{}{2})
z(h,p,a,b) =z=h(6\mp@subsup{a}{}{2}-48ab-18\mp@subsup{b}{}{2})+p(-24\mp@subsup{a}{}{2}-36ab+72\mp@subsup{b}{}{2})
```

1) $\quad 7 x\left(3,-1, a, 2 a^{2}-1\right)+y\left(3,-1, a, 2 a^{2}-1\right)+5184$ Stara $_{a}+158976 \mathrm{FN}_{a}{ }^{4} \equiv 0 \bmod (1104)$

Thus equation (6) represent the non-zero integral solutions to (1) A few interesting properties observed are as follows:

```
1. x(h,p,a,b)+y(h,p,a,b)-z(h,p,a,b)=0
[x(h,p,a,b)+y(h,p,a,b)]}\mp@subsup{]}{}{2}-\mp@subsup{z}{}{2}(h,p,a,b)=
x(1,1,a,1)+7y(1,1,a,1)+114 \mp@subsup{\mathrm{ Pro}}{a}{}\equiv0(mod 114)
z(h,p,a,1)-h{6\mp@subsup{\mathrm{ Pro}}{a}{}-27Gnoa
```

Pattern-II
Rewrite equation (3) as
$u^{2}+3 v^{2}=57\left(h^{2}+3 p^{2}\right) z w^{2}{ }^{*} 1$
Mark 1 as
$1=\frac{(n+n i \sqrt{3})(n-n i \sqrt{3})}{(2 n)^{2}}$

Using (4), (5) and (8) in (7) and applying the method of factorization. Classify,

$$
\begin{equation*}
u+i \sqrt{3} v=(n+n i \sqrt{3})(3 n+4 n i \sqrt{3})(n+i \sqrt{3} P)(a+i \sqrt{3} b)^{2} \tag{9}
\end{equation*}
$$

Equating the real and imaginary parts, we have

$$
\begin{aligned}
& u=\frac{1}{2}\left\{h\left(-9^{2}-42 a b+27 b^{2}\right)+p\left(-21 a^{2}+54 a b+63 b^{2}\right)\right\} \\
& v=\frac{1}{2}\left\{h\left(7 a^{2}-18 a b-21 b^{2}\right)+p\left(-9 a^{2}-42 a b+27 b^{2}\right)\right\}
\end{aligned}
$$

Hence in view of (2) the values of x, y, z are given by

$$
\begin{aligned}
& x=\frac{1}{2}\left\{h\left(-2 a^{2}-60 a b+6 b^{2}\right)+p\left(-30 a^{2}+12 a b+90 b^{2}\right)\right\} \\
& y=\frac{1}{2}\left\{h\left(-16 a^{2}-24 a b+48 b^{2}\right)+p\left(-12 a^{2}+96 a b+36 b^{2}\right)\right\} \\
& z=h\left(-9 a^{2}-42 a b+27 b^{2}\right)+p\left(-21 a^{2}+54 a b+63 b^{2}\right) \\
& w=a^{2}+3 b^{2}
\end{aligned}
$$

Our interest is to obtain the integer solution, so that the values of x and y are integers for suitable choices of the parameters a and b.

$$
\begin{align*}
& \text { Put } a=2 A, b=2 B \\
& x(h, p, a, b)=x=h\left(-4 A^{2}-120 A B+12 B^{2}\right)+p\left(-60 A^{2}+24 A B+180 B^{2}\right) \\
& y(h, p, a, b)=y=h\left(-32 A^{2}-48 A B+96 B^{2}\right)+p\left(-24 A^{2}+192 A B+72 B^{2}\right) \\
& z(h, p, a, b)=z=h\left(-36 A^{2}-168 A B+108 B^{2}\right)+p\left(-84 A^{2}+216 A B+252 B^{2}\right) \\
& w(h, p, a, b)=w=4 A^{2}+12 B^{2}
\end{align*}
$$

Thus equation (10) represent the non-zero integral solutions to (1) A few interesting properties observed are as follows:

1. $x(1,-1,2, b)+w(1,-1,2, b)+156 C_{2, a} \equiv 0(\bmod 132)$
2. $y(1, p, a, a+1)+8 w(1, p, a, a+1)-48 \operatorname{Pro}_{a}(2 p-1)+24 p T_{4 a}-180 C t_{2, a} \equiv 0(\bmod 180)$
3. $z(2,1, a, a-1)+624 T_{4, a}+20$ Star $_{a}-488 C S_{a}=20$
4. $\quad x(1,1, a(a+1), a+2)+14\left(\text { Pro }_{a}\right)^{2}+576 T H_{a}-18 T_{4 a} \equiv 0(\bmod 36)$

Pattern-III
Rewrite equation (3) as
$u^{2}+3 v^{2}=19 * 3\left(h^{2}+3 p^{2}\right) z w^{2}$

Make 19 and 3 as

Using (4) and (12) in (11) and applying the method of factorization classify,
$u+i \sqrt{3} v=(4 n+n i \sqrt{3})(3 n+n i \sqrt{3})(h+i \sqrt{3} P)(a+i \sqrt{3} b)^{2}$
Equating the real and imaginary parts, we have

$$
\begin{aligned}
& u=\frac{1}{2}\left\{h\left(9 a^{2}-42 a b-27 b^{2}\right)+p\left(-21 a^{2}-54 a b+62 b^{2}\right)\right\} \\
& v=\frac{1}{2}\left\{h\left(7 a^{2}+18 a b-21 b^{2}\right)+p\left(9 a^{2}-42 a b+27 b^{2}\right)\right\}
\end{aligned}
$$

Hence in the view of (2), the values of x, y, z are given by

$$
\begin{aligned}
& x=\frac{1}{2}\left\{h\left(16 a^{2}-24 a b-48 b^{2}\right)+p\left(-12 a^{2}-96 a b+35 b^{2}\right)\right\} \\
& y=\frac{1}{2}\left\{h\left(2 a^{2}-60 a b-6 b^{2}\right)+p\left(-30 a^{2}-12 a b+89 b^{2}\right)\right\} \\
& z=h\left(9 a^{2}-42 a b-27 b^{2}\right)+p\left(-21 a^{2}-54 a b+62 b^{2}\right) \\
& w=a^{2}+3 b^{2}
\end{aligned}
$$

Our interest is to obtain the integer solution, so that the values of x and y are integers for suitable choices of the parameters a and b.
Put $a=2 A, b=2 B$
$x(h, p, a, b)=x=h\left(32 A^{2}-48 A B-96 B^{2}\right)+p\left(-24 A^{2}-192 A B+70 B^{2}\right)$
$y(h, p, a, b)=y=h\left(4 A^{2}-120 A B-12 B^{2}\right)+p\left(-60 A^{2}-24 A B+178 B^{2}\right)$
$z(h, p, a, b)=z=h\left(36 A^{2}-168 A B-108 B^{2}\right)+p\left(-84 A^{2}-216 A B+248 B^{2}\right)$
$w(h, p, a, b)=w=4 A^{2}+12 B^{2}$

Thus equal (14) represent non-zero integral solutions to (1)
A few interesting properties observed are as follows:

1) $x\left(3,2, a, 2 a^{2}+1\right)-8 y\left(3,2, a, 2 a^{2}+1\right)-27760 T_{4, a}-82080 H_{a}-143424 F N_{a}^{4}=2988$
2) $4 y\left(5,-1,2 a^{2}-1, a\right)-z\left(5,-1,2 a^{2}-1, a\right)-15552 F N_{a}^{4}+900 T_{4, a}=324$
3) $z(1,-1, a(a+1), a+2)+9 w(1,-1, a(a+1), a+2)-156\left(\text { Pro }_{a}\right)^{2}-288 \mathrm{~Pa}^{3}-2487_{4 a} \equiv 0(\bmod 496)$
4) $\quad w(n a, n a)$ is a square mumber, where $n=1,2, \ldots .$.

Pattern-IV

Rewrite (3) as

$$
\begin{equation*}
u^{2}+3 v^{2}=19 * 3\left(h^{2}+3 p^{2}\right) z w^{2} * 1 \tag{15}
\end{equation*}
$$

Using equation (4), (8) and (12) in (15) and applying the method of factorization, classify,

$$
u+i \sqrt{3} v=(4 n+n i \sqrt{3})(3 n+n i \sqrt{3})(n+n i \sqrt{3})(h+i \sqrt{3} p)(a+i \sqrt{3} b)^{2}-(16)
$$

Equation the real and imaginary parts, we have
$u=\frac{1}{4}\left\{h\left(-12 a^{2}-36 a b+36 b^{2}\right)+p\left(-48 a^{2}+72 a b+144 b^{2}\right)\right\}$
$v=\frac{1}{4}\left\{h\left(6 a^{2}-24 a b-18 b^{2}\right)+p\left(-12 a^{2}-96 a b+36 b^{2}\right)\right\}$
Hence in the view of (2), the values of x, y, z are given by

$$
\begin{aligned}
& x=\frac{1}{4}\left\{h\left(-6 a^{2}-60 a b+18 b^{2}\right)+p\left(-60 a^{2}-24 a b+180 b^{2}\right)\right\} \\
& y=\frac{1}{4}\left\{h\left(-18 a^{2}-12 a b+54 b^{2}\right)+p\left(-36 a^{2}+168 a b+108 b^{2}\right)\right\} \\
& z=\frac{1}{4}\left\{h\left(-24 a^{2}-72 a b+72 b^{2}\right)+p\left(-96 a^{2}+144 a b+288 b^{2}\right)\right\}
\end{aligned}
$$

Our interest is to obtain the integer solution, so that the values of x and y are integers for suitable choices of the parameters a and b.

```
Put }a=4A,b=4
x(h,p,a,b) =x=h(-24A\mp@subsup{A}{}{2}-240AB+72\mp@subsup{B}{}{2})+p(-240\mp@subsup{A}{}{2}-96AB+720\mp@subsup{B}{}{2})
y(h,p,a,b)=y=h(-72\mp@subsup{A}{}{2}-48AB+216\mp@subsup{B}{}{2})+p(-144\mp@subsup{A}{}{2}+672AB+432\mp@subsup{B}{}{2})
z(h,p,a,b)=z=h(-96A2-288AB+288\mp@subsup{B}{}{2})+p(-384A2}+576AB+1152\mp@subsup{B}{}{2}
w(h,p,a,b)=w=16A2}+48\mp@subsup{B}{}{2
\[
z(1,-1,3,2)+6 w(1,-1,3,2) \text { is a Nasty Number }
\]
\[
w(n a, n a) \text { is a square number, where } n=1,2, \ldots .
\]
\[
x\left(1,2,2 a^{2}, a\right)+252\left(C t_{2, a} * T_{18, a}\right)+840 P_{a}^{5} \equiv-300(\bmod 1464)
\]

\section*{3. Conclusion:}

To conclude, one may search for other patterns of solutions and their corresponding properties.

\section*{4. REFERENCE:}
1) L.E. Dicson, History of Theory of numbers, Vol.2, Diophantine analysis, New Yark, Dover, 2005.
2) L.J.Mordell, Diophantine Equations, Academic Press, New York, 1969.
3) Carmichael. R.D, The Theory of numbers and Diophantine Analysis, New York, Dover, 1959.
4) M.A. Gopalan and S. Premalatha, Integral solutions of \((x+y)\left(x y+w^{2}\right)=2 \quad\left(k^{2}+1\right) z^{3}\), Bulletin of pure and applied sciences, Vol. 29E(No.2), p_p 197-202, 2009.
5) M.A. Gopalan and V. PandiChelvi, Remarkable solutions on the cubic equation with four unknows \(x^{3}+y^{3}+z^{3}=28(x+y+z) w^{2}\), Antarctica J. of maths, Vol. 4, No.4, p \(393-401\), 2010.
6) M.A. Gopalan and B. Sivagami, Integral solutions of homogeneous cubic equation with four unknows \(x^{3}+y^{3}+z^{3}=3 x y z+2(x+y) w^{3}\), Impact. J. Sci.Tech, Vol.4, No. pp 53-60, 2010.
7) M.A. Gopalan and S. Pramelatha, on the cubic Diophantine equation with four unknows \((x-y)\left(x y-w^{2}\right)=2(n 2+2 n) z^{3}\), International Journal of mathematical sciences, Vol.9, No.1-2, Jan-June, \(p_{p}\) 171-175, 2010.
8) M.A. Gopalan and J. Kaligarani, Integral solutions of \(x^{3}+y^{3}+(x+y) x y=z^{3}+w^{3}+(z+w) z w\), Bulletin of pure and applied sciences, Vol.29E(No.1), pp 169-173, 2010.
9) M.A. Gopalan and S. Pramelatha, Integral solutions of \((x+y)\left(x y+w^{2}\right)=2(k+1) z^{3}\), The Global Journal of applied mathematics and Mathematical sciences, Vol.3, No.1-2, pp 51-55, 2010.
10) M.A. Gopalan and S. Vidhyalakshmi and S. Mallika, Obsertvation on the cubic equation with four unknows \({ }^{2}\left(x^{3}+y^{3}\right)=z^{3}+w 2(x+y)\), IJAMP Vol.4, No.2, pp 103-107, JulDec 2012.
11) Anbuselvi R, Kannaki K, On ternary Quadratic Equation \(11 x^{2}+3 y^{2}=14 z^{2}\) Volume 5, Issue 2, Feb 2016, Pg No. 65-68.
12) Anbuselvi R, Kannaki K, On ternary Quadratic Equation \(x^{2}+x y+y^{2}=12 z^{2}\) IJAR 2016: 2 (3);533-535.
13) Anbuselvi R, Kannaki K, On ternary Quadratic Equation \(3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=15 z^{3}\) IJSRSep 2016:5(9);42-48
14) Anbuselvi R, Kannaki K, On ternary Quadratic Diophantine Equation \(7\left(x^{2}+y^{2}\right)-13 x y+x+y+1=31 z^{2}\) IERJ Feb 2017:3(2);52-57.
15) Anbuselvi R, Kannaki K, On the Homogeneous Biquadratic Equation with Four Unknowns \(x^{4}+y^{4}+z^{4}=98 w^{4}\) GJRA Oct 20176(10);92-93.

\section*{A few interesting properties observed are as follows:}```

