
1. INTRODUCTION
Many replacement models were developed under the assumption 
that the system after repair is “as good as new”.   This leads to a 
perfect repair model.  But it is not always true for deteriorating 
systems due to ageing and accumulated wear.  Later, Barlow and 
Hunter [1] developed a minimal repair model in which the minimal 
repair does not change the age of the system.
 
Brown and Proschan [2] proposed an imperfect repair model under 
which the repair will be perfect repair with probability 'p' and with 
probability '(1-p)' as a minimal repair. Much research work has been 
carried out by   Block et al [3-5] and others have also worked in this 
direction. It is reasonable to assume that the successive working 
times of the deteriorating systems after repair will become shorter 
and shorter, while the consecutive repair time of the system will 
become longer and longer. Finally it can't work any longer, neither 
can it be repaired. To model such a deteriorating repairable system 
Lam [6,7] �rst introduced a geometric process repair model in which 
he studied two kinds of replacement policies, one based on the 
working age T of the system and the other based on the failure 
number N of the system. He derived an explicit expression for the 
long run average cost per unit time under these two kinds of policies 
and also proved optimal policy N* is better than the optimal policy 
T*.  Stadje and Zuckerman [9] presented a general monotone 
process to generalize Lam's work. Later, much research work has 
been carried out by using geometric process to generalize Lam's 
work and corresponding optimal replacement policies were 
developed by Wang and Zhang [10]. Zhang et.al [15] determined an 
optimal replacement policy for a deteriorating production system 
with preventive maintenance by generalizing Lam's [6] works.  
Many optimal replacement policies were also developed for cold 
standby repairable systems using geometric processes (see 
[11,13,14].) 
 
Zhang [12] considered a cold standby repairable system consisting 
of two identical components and one repairman.  He developed 
two kinds of repair replacement policies, one based on the working 
age T of component 1 under which the system is replaced when 
working age of component 1 reaches T and the other based on 
failure number N of component 1 under which the system is 
replaced when the failure number of component 1 reaches N. He 
derived an explicit expression for long-run average cost per unit 
time of the system under these two kinds of policies.

However the geometric process is more useful model for 
deteriorating system, Braun et al [16] introduced an alternative 
model,  the -ser ies  process  ,which contr ibutes  these a
characteristics. Furthermore Braun et al [16] explained the 

increasing geometric process grows at most logarithmically in time, 
while the decreasing geometric process is almost certain to have a 
time of explosion. The -series process grows either as a polynomial 
in time or exponential in time. It also noted that the geometric 
process doesn't satisfy a central limit theorem, while the -series 
process does. Braun et al [16] also presented that both the 
increasing geometric process and the -series process have a �nite 
�rst moment under certain general conditions. However the 
decreasing geometric process usually has an in�nite �rst moment 
under certain conditions. Thus the decreasing -series process may 
be more appropriate for modeling system working times while the 
increasing geometric process is more suitable for modeling repair 
times of the system. 
 
Based on this understanding the present paper studies a cold 
standby repairable system consisting of two identical components 
namely component 1, component 2 and one repairman is studied. 
Assume that each component after repair is not 'as good as new' and 
also the successive working times form a decreasing -series process, 
the successive repair time's form an increasing geometric process 
and both the processes are exposing to exponential failure law. 
Under these assumptions we study an optimal replacement policy 
N in which we replace the system when the number of failures of 
component 1 reaches N. It can be determined that an optimal repair 
replacement policy N* such that the long run average cost per unit 
time is minimized. It can also be derived an explicit expression of the 
long-run average cost and the corresponding optimal replacement 
policy N* can be determined analytically. Numerical results are 
provided to support the theoretical results.

In modeling these deteriorating systems, the de�nitions according 
to Lam [6,7], are given below.

De�nition 1:
Given two random variables X and Y, if P(X>t) > P(Y>t) for all real t, 
then X is called stochastically larger than Y or Y is stochastically less 
than X.  This is denoted by X >  Y or Y <  X respectively.st st

De�nition 2:
Assume that {Y , n=1,2,….}, is a sequence of independent non-n

negative random variables.  If the distribution function of X  is F  (t) = n n
n-1F(a t) for some a > 0 and all n=1,2,3,…., then {Y , n=1,2,…,} is called n

a geometric process, 'a' is the ratio of the geometric process.

Obviously:
if  a>1, then {Y , n=1,2,….} is stochastically decreasing, i.e, Y   >  Y  , n n st n+1

n=1,2,…;
if  0<a<1, then {Y , n=1,2,….} is stochastically increasing, i.e, Y   <  Y  n n st n+1
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, n=1,2,;

if a=1, then the geometric process becomes a renewal process.
De�nition 3: Assume that {X , n=1,2,….}, is a sequence of n

independent non-negative random variables.  If the distribution 
function of X  is   for some  > 0 and all n=1, 2, 3… then n )()(tkFtFna= a
{X , n=1, 2…} is called a series process,   is called exponent of the n a
process. Braun et al [16].

Obviously:
if  >0, then {X , n=1,2,….} is stochastically decreasing, i.e, X   >  X  , n n st n+1

n=1,2,…;

if  0<<1, then {X , n=1,2,….} is stochastically increasing, i.e., X   <  X  n n st n+1

, n=1,2,;

if =0, then the series process becomes a renewal process.

2. THE MODEL
In this section, an optimal replacement policy N for a cold standby 
repairable system using geometric process exposing to exponential 
failure law is studied under the following assumptions:

ASSUMPTIONS:
1. At the beginning two components are good. The component 1 

works while component 2 is under cold standby.
2. As soon as the working component fails, it is immediately 

repaired by the repairman.  At the same time, standby one 
begins to work.  When the failed one has been repaired, it either 
begins to work again or becomes cold standby.  If one fails 
another is still under repair, it must wait for repair and the 
system breaks down.

3. The replacement time is negligible.
4. Each component after repair is not 'as good as new'.

th5. The time interval between the completion of the (n-1)   repair 
th thand the completion of the n  repair on component 'i' is called n   

cycle of component i, for i=1, 2 and n=1,2,…
(I) (i)6.    Let X  and  Y  are all independent, for i=1, 2 and n=1, 2, 3….. .n n
(I) (i)  7.    Let X  and  Y be successive working time follows decreasing a n n

a series process, the successive repair times form an increasing 
geometric process respectively and both the processes are 
exposing to exponential failure law. Where i=1, 2 and n=1, 2, 3….. .

n-1 n-1 (I)8.    Let F(a  x) and G (b  y) be the distribution function of  X  and  n
(I)Y   respectively, for i=1,2 and n=1,2,…. where a > 1 and 0 < b < 1.n

9.   

10.  
11. The cold standby state and nearest working state have the same 

distribution. Similarly the waiting time for repair state and 
repair period have the same distribution.

12. The component in the system can't produce the working 
reward while in cold standby state, and no cost is incurred 
during waiting for repair.

13. The repair cost rate of the each component is C , the working r

reward rate of each component is C , and the replacement cost w

of the system is C.

Under these assumptions, an explicit expression for the long-run 
average cost per unit time and optimal solution for obtaining 
number of failures (N), which minimizes the long-run average cost 
per unit time, is discussed below.

3. The Long-run Average Cost Rate Under Policy N
There are two kinds of repair replacement policies: one based on the 
working age T of component 1 under which we replace the system 
when the working age of component 1 reaches T and the other 
based on the failure number (N) of component 1 under which we 
replace the system when failure number of component 1 reaches N.  
But here the replacement policy N is considered because it is very 
effective and easy to implement.

Thus number of failures of component 1 reaches N, then 

component 2 is either under working state or under waiting for 
threpair state in the N  cycle.  Naturally, the farmer works until failure 

th thin the N  cycle.  The latter is not repaired any more in the N    cycle, 
thwhile component 1 works in the (N+1)  cycle.

th thLet T  (n>2) be the time between the (n-1)   replacement and the n  n

replacement of the system under policy N.  Clearly {T , T …. } form a 1 2

renewal process and the inter arrival time between two consecutive 
replacements is called renewal cycle.

According to renewal reward theorem Ross [8], the long-run 
average cost rate under policy N is:   

                                                                                                                        (3.1)

Let L be the length of renewal cycle of the system under policy N, 
then

                                                                                                                      (3.2)

where the �rst, second, third and fourth terms respectively working 
age, repair time, waiting for repair and cold standby time of 
component 1 and where I is an indicator random variable such that

Now we �nd expected value of renewal cycle length L, under the 
assumptions of the model.

 (3.3)

Now the expected length of working time can be obtained as 
follows:
Let

Then the distribution function of  , for  k=1,2,3,….and  i=1,2 is :  (i)Xk

                                                                                                                (3.4)

By de�nition the expected length of working time is :

                                                                                                                (3.5)

                                                                                                                (3.6)

The expected length of repair time of component 1 can be obtained 
as follows:

(i)Let                  then the distribution function of  for i=1,2, and Y            k

k=1, 2, 3, …., is

                                                                                                                      (3.7)

By de�nition, the expected length of repair time is:

                                                                                                                    

                                                                                                                     (3.8)
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The expected length of waiting time for repair can be computed as 
follows:

Let g(u) be the probability density function of                               then 
by de�nition of probability density function and using Jacobian 
transformation we have:

Where                                                                                              (3.9)

(i) (i)Since   X   and  Y   are all independent, for i=1,2 and k=1,2,3,…..,n.k k

                                                                                                            (3.10)

From equations (3.9) and (3.10)  we have:

                                                                                                                  (3.11)

Let                                                                                                               (3.12)      

                                                                                                                     (3.13)

Similarly, the expected length of cold standby time can be 
computed as follows:
 
                                                                                                                     (3.14)

Where  g(v)  be the p.d.f of                                 By de�nition of p.d.f and 
using Jacobean Transformation we have:

                                                                                                                     (3.15)

                                                                                                                     (3.16)

(i) (i)Since X  and Y   for i=1, 2 are all independent and form a k k

geometric process,

                                                                                                                    (3.17)

Using equations (3.17) and (3.18), we get:

                                                                                                                    (3.18)

From equations (3.15) and (3.20), we have:

                                                                                                                    (3.19)

Using the equations (3.6), (3.8), (3.13) and (3.19) ,equation (3.3) 
becomes:

                                                                                                                    (3.20)
 Using equations (3.4), (3.8), and (3.20) .we have:

From equations (3.6) ,(3.8),(3.14),(3.21)and (3.22), we have:

                                                                                                                    (3.24)

This is the long run average cost per unit time under policy N.
Where 

Using this C (N), the optimal replacement policy N* is determined by 
*numerical methods such that C(N ) is minimized.The next section 

provides some numerical results to highlight the obtained 
theoretical results.

4. Numerical Results And Conclusions
For the given hypothetical values of the parameters of λ, µ, α, b, C , C, w

and C the values of long-run average cost per unit time are r 

calculated from the expression (3.24) as follows:  

Table 4.1: Values of the long-run average cost rate under policy 
N.
          λ  =10, μ=20, , α=0.45, C=3000, Cw=10  Cr=50
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b=0.85 b=0.75
N C(N) C(N)
2 86.05883 84.44675
3 82.03035 80.26599
4 80.83704 79.32042
5 80.76468 79.58738
6 81.19815 80.33242
7 81.86819 81.23691
8 82.64165 82.15073
9 83.44743 83.00255

10 84.24582 83.7614
11 85.01423 84.41778
12 85.74007 84.97379
13 86.41673 85.43738
14 87.04142 85.81917
15 87.61375 86.13043
16 88.13486 86.3821
17 88.60689 86.58418
18 89.03257 86.74548
19 89.41496 86.87359
20 92.78445 87.41349
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CONCLUSIONS:
Ÿ From the table 4.1 and graph 4.1, We can observe that the long-

run average cost per unit time at the time C (6) = 81.19815   is 
minimum at b=0.85. We should replace the system at the time of 

th6  failure.
Ÿ From this, we can say that as 'b' increases number of failures 

increases, while ' ' decreases an increase in the number of a
failure, which coincides with the practical analogy and helps the 
decision maker for making an appropriate decision.

Ÿ If the repairman experiences with repair then the successive 
repair times form a decreasing geometric process, while the 
consecutive working times form a an increasing alpha process. 
Thus this model can also be applied for an improved model.

REFERENCES 
[1] Barlow, R.E and Hunter, L.C, ‘Optimum Preventive Maintenance Policies’, Operations 

Research, Vol. 08, pp.90-100, 1959.
[2] Borwn,M., and Proschan,F.,’Imperfect Repair’, Journal of Applied Probability, Vol.20, 

PP 851-859, 1983.
[3] Block, H.W., Borges, W.S., and Savits, T.H., ‘Age-dependent minimal Repair’, Journal of 

Applied probability, Vol.22, pp 370-385,1983.
[4] Block,H.W.,Borges,W.S., Savits,T.H., ‘A general age replacement model with minimal 

repair’, Naval Research Logistics, Vol.No.35,  pp 365-372, 1988.
[5] Block, H.W., Lanberg, N.A., and Savits, T.H., ‘Repair replacement Policies’,  Journal of 

Applied probability, Vol.34, pp 194-206,1993.
[6] Lam Yeh., ‘Geometric Processes and Replacement Problems’, Acta Mathematicae 

Applicatae Sinica, Vol.4, pp 366-377,1988 a.
[7] Lam Yeh.,’A Note on the Optimal Replacement Problem’, Advanced Applied 

Probability, Vol.20, pp 479-482,1988 b.
[8] Ross, S.M., “Stochastic Processes”, 2nd Edition, New York, Wiley,1996.
[9] Stadje,W and Zuckerman D, ‘Optimal repair policies with general degree of repair in 

two maintenance models’, Operations Research Letters, Vol.11, pp.77-80, 1992. 
[10] Wang ,G.J and, Zhang ,Y.L,  ‘A bivariate mixed policy for a simple repairable system 

based on preventive repair and failure repair’, Applied Mathematical Modeling, 
vol.33, pp.3354–3359, 2009.

[11] Zhang,Y.L., ‘A Bivariate Optimal Replacement Policy for a Repairable System’, Journal 
of Applied Probability, Vol.31, pp .1123-1127, 1994.

[12] Zhang,Y.L., ‘An Optimal Geometric Process Model for a Cold Standby Repairable 
System’, Reliability Engineering and System Safety, Vol.63, pp .107-110, 1999.

[13] Zhang,Y.L., ‘A Geometric process repair model with good-as-new Preventive Repair’, 
IEEE Transactions on reliability, R-51, pp .223-228, 2002.

[14]  Zhang,Y.L., ‘An Optimal Replacement Policy for a three state Repairable system with a 
Monotone process Model’, IEEE Transactions on Reliability, Vol. 53, No.4, pp. 452-457 
,2004.

[15] Zhang,Y.L., Yam, R.C.M., and Zuo, M.J., ‘Optimal Replacement policy for a deteriorating 
Production system with Preventive Maintenance’, International Journal of Systems 
Science, Vol.32(10), pp. 1193-1198, 2001.

[16] Braun W.J, Li Wei and Zhao Y.Q, ‘Properties of the geometric and related process’, Naval 
Research Logistics, Vol.52, pp.607-617, 2005.

24 X GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS

VOLUME-8, ISSUE-2, FEBRUARY-2019 • PRINT ISSN No 2277 - 8160


