TOTAL NONSPLIT GEODETIC NUMBER IN GRAPHS

Dr. A. Vijayalekshmi
Aksha S. S Jilu*

Associate Professor in Mathematics, S. T. Hindu College, Nagercoil-629 002, Tamilnadu, India.
M. Phil Scholar, Department of Mathematics, S.T. Hindu College, Nagercoil-629002, Tamilnadu, India. *Corresponding Author

ABSTRACT The nonsplit geodetic set S of a graph $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G})$) is said to be total nonsplit geodetic set if the induced subgraph <S> has no isolated vertices. The minimum cardinality of a total nonsplit geodetic set in G is called total nonsplit geodetic number of G and is denoted by $g_{\mathrm{trs}}(G)$. In this paper we obtain a relationship between nonsplit geodetic number and the total nonsplit geodetic number of G. Also we find the total nonsplit geodetic number of some classes of graphs.

KEYWORDS : Geodesic, geodetic set, geodetic number, nonsplit geodetic set, nonsplit geodetic number, total nonsplit geodetic number

1.INTRODUCTION:

All graphs considered in these paper are finite, undirected, simple graphs. We denote the vertex set and the edge set of a graph G by $V(G)$ and $E(G)$ respectively. For a vertex v of G, theeccentricity $e(v)$ is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is the radius, rad G, and the maximum eccentricity is the diameter, $\operatorname{dim} G$. A $u-v$ path of length $\mathrm{d}(u, v)$ is also referred to as a u-v geodesic. We define I $[u, v]$ to the set of all vertices lying on some $u-v$ geodesic of G and for a nonempty subset S of $\mathrm{V}(\mathrm{G}), \mathrm{I}[S]=U_{u, v \in s} I[u, v]$. A set S of vertices of G is called a geodetic set in G if $I[S]=\mathrm{V}(\mathrm{G})$. The geodetic number $g(G)$ is the minimum cardinality of a geodetic set of G. A set of vertices S in a graph G is a nonsplit geodetic set if S is a geodetic set and the induced subgraph $<\mathrm{V}(G)-S>$ is connected. The minimum cardinality of a nonsplit geodetic set, denoted $g_{\mathrm{ns}}(G)$ is called the nonsplit geodetic number of G. The nonsplit geodetic set S of a graph G is said to be total nonsplit geodetic set if the induced subgraph $\langle S>$ has no isolated vertices. The cardinality of a minimum total nonsplit geodetic set in G is called total nonsplit geodetic number of a graph and is denoted by $g_{\mathrm{tns}}(G)$. We denote a path on n vertices and a cycle on n vertices by P_{n} and C_{n} respectively. A path on n vertices is a tree with two vertices of degree 1 and the other ($n-2$) vertices are of degree 2. A wheel graph W_{n} is a graph n vertices constructed by connecting a single vertex to every vertex in an ($n-1$) cycle. The (m, n)-tadpol graph also called a dragongraph is the graph obtained by joining a cycle graph C_{m} to a path graph P_{n} with a bridge. The Cartesian product GH of graphs G and H is a graph with the vertex set is the Cartesian product $\mathrm{V}(\mathrm{G}) \times \mathrm{V}(\mathrm{H})$ and two vertices (u, u) and $\left(v, v^{\prime}\right)$ are adjacent in G Hiff either $u=v$ and u^{\prime} is adjacent to v^{\prime} in H or $u^{\prime}=v^{\prime}$ and u is adjacent to v in G. The n-ladder graph can be defined as $P_{2} P_{n}$. It is therefore equivalent to the $2 \times n$ grid graph. The n-book graph is defined as the Cartesian product $S_{m}+1 \quad P_{2}$, where $S m$ is a star graph. The fan graph $\mathrm{F}_{\mathrm{m}, \mathrm{n}}$ is defined as the graph join $\bar{K}_{\mathrm{m}}+\mathrm{P}_{\mathrm{n}}$ where \bar{K}_{m} is the empty graph on m nodes. A n-barbell graph is the simple graph obtained by connecting two copies of a complete graph K_{n} by a bridge. We use this idea to develop the concept of total nonsplit geodetic number.

2. Main Results:

Definition 2.1: The geodetic set S is said to be a total nonsplit geodetic set if the subgraph induced by S has no isolated vertices and the induced subgraph $\langle V(G)-S\rangle$ is connected. The minimum cardinality of a total nonsplit geodetic set is called the total nonsplit geodetic number of G and is denoted by $g_{\mathrm{ns}}(G)$.

For this graph $\mathrm{G}, \mathrm{S}=\left\{v_{1}, v_{3}, v_{5}, v_{6}\right\}$ is a total nonsplit geodetic set. Therefore $g_{\mathrm{tns}}(G)=4$.

Theorem 2.2. For any path graph G of order $n>4, g_{\mathrm{tns}}(G)=4$.
Proof. Let $\mathrm{V}(\mathrm{G})=\left\{v_{1}, v_{2}, \ldots, v_{n}-1, v_{n}\right\}$ be the vertices of the path graph G. Let $S=\left\{v_{1}, v_{2}, v_{n}-1, v_{n}\right\}$ be the total nonsplit geodetic set of G and $\mathrm{I}[\mathrm{S}]=\mathrm{V}(\mathrm{G})$. The induced subgraph $\langle S\rangle$ has no isolated vertices and the subgraph induced by $<\mathrm{V}(G)-S>$ is connected. Therefore S is the minimum total nonsplit geodetic set of G. Hence $g_{\mathrm{tns}}(G)=4$.

Theorem 2.3. For the cycle $C_{n}, n \geq 4, g_{\mathrm{tns}}\left(C_{n}\right)=\left|\frac{n}{2} 1\right|$
Case(I):When n is even

Consider $\left\{v_{1}, v_{2}, \ldots, v_{2 n}, v_{n}\right\}$ be the cycle with $2 n$ vertices. Let $S=\left\{v_{1}, v_{2}\right.$ $\left.\ldots, v_{i}-1, v_{n}\right\}$ be a total nonsplit geodetic set of $C_{2 n}$. For any two antipodal vertices v_{1} and v_{i} and $\left\{v_{2}, \ldots, v_{i}-1\right\}$ arethe internal vertices of $v_{1}-v_{i}$. Since no two vertices of S form a total nonsplit geodetic set, there exists a total nonsplit geodetic set contains $\frac{n}{2}+1$ vertices. Therefore Therefore $\mathrm{I}[\mathrm{S}]=\mathrm{V}\left(C_{2 n}\right)$. Since $v_{1}-v i$ is a path, the subgraph induced by S has no isolated vertices and the induced subgraph $<\mathrm{V}(G)$ $-S>$ is connected. Therefore S is the minimum total non split geodetic set of $C_{2 n}$. So $g_{\mathrm{tns}}(G)\left(C_{2 n}\right)=|S|=\left[\frac{n}{2}+1\right]$

Case(ii): When n is odd.

Consider $\left\{v_{1}, v_{2}, \ldots, v_{2 n+1}, v_{1}\right\}$ be a cycle with 2_{n+1} vertices. Let $S=\left\{v_{1}, v_{2}\right.$ $\left.\ldots, v_{i}, v_{i+1}\right\}$ be a total nonsplit geodetic set of $C_{2 n+1}$. Then the paths, $v 1$ $-v_{i+1}$ and $v_{i}-v_{i+1}$ includes all the verticesof $C_{2 n+1},|S|=\left[\frac{n}{2}+1\right]$ Therefore $\mathrm{I}[\mathrm{S}]=\mathrm{V}\left(C_{2 n+1}\right)$. The subgraph induced $\langle S>$ has no isolatedvertices and the induced subgraph $<\mathrm{V}(G)-S>$ is connected. Therefore S is the minimum total nonsplit geodetic set of $C_{2 n+1}, g_{\mathrm{tns}}\left(C_{2 n+1}\right)=|S|=\left[\frac{n}{2}+1\right]$. Hence $g_{\mathrm{tns}}\left(C_{n}\right)=\left[\frac{n}{2}+1\right]$

Theorem 2.4. For any wheel graph Wn of order $n \geq 5, g_{\mathrm{tns}}\left(W_{\mathrm{n}}\right)=\mathrm{n}-2$.

Proof. Let $\mathrm{W}_{\mathrm{n}}=K_{1}+C_{n-1}(\mathrm{n} \geq 5)$ with x be the vertex of K_{1} and $V\left(C_{n-1}\right)=\left\{v_{1}\right.$ $\left.v_{2}, \ldots, v_{n-1}\right\}$. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n-2}\right\}$ be the total nonsplit geodetic set of W_{n}. Then any path $v_{i}-v_{p} i, j=\frac{1-2}{1(\mathrm{n}-2)}$ include all the vertices of W_{n}, $\mathrm{I}[\mathrm{S}]=\mathrm{V}\left(\mathrm{W}_{\mathrm{n}}\right)$. Since $v_{1}-v_{n}-2$ is a path the subgraph induced by S has no isolated vertices. The remaining vertices of W_{n} are v_{n-1} and x is connected. Thus S is the minimum total nonsplit geodetic set of W_{n}. Therefore $g_{\text {tns }}\left(W_{n}\right)=|S|=\mathrm{n}-2$.

Teorem2.5. For any tadpole graph G of order $n \geq 1, m \geq 3$,
$g_{\text {tns }}(G)= \begin{cases}g(G)+1 & \text { if } m \text { is odd } \\ g(G)+2 & \text { if } m \text { is even }\end{cases}$
Proof. We prove this theorem by the following cases.

Case(I):When m is odd

Consider $\left\{v_{1}, v_{21}, v_{m+n}\right\}$ be the vertices of G . Suppose $S=\left\{v_{1}, v_{21}, v_{m+n}\right\}$ be the geodetic set of G . It is clear that $\langle\mathrm{V}(G)-S>$ is connected. Thus S is a nonsplit geodetic set. But <S> hasisolated vertices, S not a total geodetic set. Let $S^{\prime}=S \cup\left\{V_{m+n-1}\right\}$. Clearly $\left\langle S^{\prime}>\right.$ has no isolated vertices. Hence S^{\prime} forms a minimal total nonsplit geodetic set. This follows that $\left|S^{\prime}\right|=|S|+1$ implies that $g_{\mathrm{trs}}(G)=g(G)+1$.

Case (ii):When m is even.
Consider $\left\{v_{1}, v_{2}, v_{m+n}\right\}$ be the vertices of a tadpole graph. Now consider $S=\left\{v_{1}, v_{m+n}\right\}$ be the geodetic set of G and it is clear that $\langle\mathrm{V}(G)-S\rangle$ is connected. Thus S is a nonsplit geodetic set. But $\langle S\rangle$ has an isolated vertices. Therefore consider $S^{\prime}=S \cup\left\{v_{2}, v_{m+n-1}\right\}$ such that $\left\langle S^{\prime}\right\rangle$ has no isolated vertices and $\langle\mathrm{V}(G)-S\rangle$ is connected. Thus S^{\prime} forms a minimum total nonsplit geodetic set. This follows that $\left|S^{\prime}\right|=|S|+2$ implies that $g_{\mathrm{trs}}(G)=g(G)+2$.

Theorem 2.6. For any ladder graph G of order $n \geq 3, g_{\mathrm{trs}}(G)+g_{\mathrm{trs}}(G)$.
Proof. Let G be a ladder graph and $\operatorname{let} \mathrm{V}(\mathrm{G})=\left\{v_{1}, v_{2}, \ldots, v_{n}-1, v_{n}\right\}$. In the ladder graph the geodetic set $S=\left\{v_{1}, v_{n}\right\}$ is not a total nonsplit geodetic set because $\langle S\rangle$ has isolated vertices. Therefore let us consider $S^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{n}-1, v_{n}\right\}$. Now all the vertices of G lies in the geodetic of vertices of S^{\prime} and $<V(G)-S^{\prime}>$ is connected. Thus forms a total nopnsplit geodetic set. Implies $g_{\mathrm{ns}}(G)=S^{\prime}=4=g(G)+g_{n s}(G)$.

Theorem 2.7. Let $G=K n-e, n \geq 3$.Then $g_{t r s}(G)=3$.
Proof. Let $\left\{v_{1}, v_{21}, \ldots, v_{n}-1, v_{n}\right\}$ be the vertices of G. Let $S=\left\{v_{1}, v_{n}\right\}$ be such that degree $\left(v_{1}\right)=\operatorname{degree}\left(v_{n}\right)=n-2$ and $\mathrm{I}[\mathrm{S}]=\mathrm{V}(\mathrm{G})$. Clearly S is a nonsplit geodetic set but the induced subgraph $\langle S\rangle$ has isolated vertices. Therefore consider $S^{\prime}=S U\left\{V_{i}\right\}$, where $2 \leq i \leq n-1$ such that $\left\langle S^{\prime}\right\rangle$ has no isolated vertices and $\left\langle V(G)-S^{\prime}>\right.$ is connected. Thus S^{\prime} forms a minimum total nonsplit geodetic set. Therefore $g_{\mathrm{trs}}(G)=\left|S^{\prime}\right|=3$.

Theorem 2.8. For any book graph G of order $n \geq 2, g_{\mathrm{ts}}(G)=r(G)+n$.
Proof. Let $\left\{v_{1}, v_{21}, \ldots, v_{2 n+2}\right\}$ be the set of all vertices of G and let $S=\left\{v_{1}, v_{2}\right.$ $\left.v_{4}, v_{6^{\prime}}, \ldots, v_{2 n}\right\}$ be the geodetic set. Clearly $|S|=n+1$. Then $\langle V(G)-S\rangle$ is connected S is a nonsplit geodetic set. But $\langle S\rangle$ has isolated vertices. Let $S^{\prime}=S \cup\left\{V_{2_{n+2}}\right\}$. Then $\left\langle S^{\prime}\right\rangle$ has no isolated vertices. Thus S^{\prime} forms a minimum total nonsplit geodetic set. It follows that S^{\prime} $=n+1+1=n+2$. Implies $g_{\text {ms }}(G)=n+2$. We have for any book graph, $r(G)=2$. Therfore $g_{\mathrm{rss}}(G)=\mathrm{r}(G)+\mathrm{n}$.

Theorem 2.9. For any fan graph G of order $m \geq 1, n \geq 3, g_{\text {ms }}$

$$
\left(G_{i}\right)= \begin{cases}n & \text { if } m=1 \\ m+1 & \text { if } m \geq 2\end{cases}
$$

Proof. We prove this theorem by the following cases.

Case (I):When $m=1$

Consider $\left\{v_{1}, v_{2}, \ldots, v_{n+1}\right\}$ be the vertices of G. Now $S=\left\{v_{1}, v_{3}, \ldots, v_{n}\right\}$ be the nonsplit geodetic set.Clearly $\mathrm{l}[\mathrm{S}]=\mathrm{V}(\mathrm{G})$. But $\langle S\rangle$ has an isolated vertices. So $S^{\prime}=S \cup\left\{v_{2}, v_{4 t}, \ldots, v_{n-1}\right\}$. Then $\left\langle S^{\prime}\right\rangle$ has no isolated vertices. Thus S^{\prime} forms a total nonsplit geodetic set of G with minimum cardinality. Therefore $g_{\mathrm{trs}}(G)=\frac{n}{2}+\frac{n}{2}=\mathrm{n}$.

Case (ii):When $m \geq 2$
Consider $\left\{v_{1}, v_{2}, v_{m+n}\right\}$ be the vertices of G. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{m+n-1}, v_{m+n}\right\}$ be the nonsplit geodetic set. Now consider induced subgraph $\langle S\rangle$.

Clearly $\langle S\rangle$ has isolated vertices. Let $S^{\prime}=S \cup\left\{v_{m+n-1}\right\}$.Thus S^{\prime} forms a minimum total nonsplit geodetic set. Therefore $g_{m s}(G)=\left|S^{\prime}\right|=m+1$.

Theorem 2.10. For any graph of order $\mathrm{n}, g_{\mathrm{ns}}(G) \leq g_{\mathrm{trs}}(G)$.
Proof. Let G be any graph with $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $S \mathrm{~V}(\mathrm{G})$ be a nonsplit geodetic set of G. If the induced subgraph $\langle S>$ has no isolated vertices, S itself is a total nonsplit geodetic set and therefore $g_{n s}(G)=g_{t r s}(G)$. Otherwise choose a minimal subset $S^{\prime} \quad \mathrm{V}(\mathrm{G})-\mathrm{S}$ such that induced subgraph $<V(G)-\left(S \cup S^{\prime}\right)>$ is connected and the induced subgraph $<S \cup S^{\prime}>$ has no isolated vertices. Clearly $S \cup S^{\prime}$ is total nonsplit geodetic set of G and so $g_{n s}(G)<g_{\mathrm{trs}}(G)$. Hence $g_{\mathrm{ns}}(G) \leq$ $g_{\text {trs }}(G)$

Theorem 2.11. For a n-barbell graph $G, g(G)=g_{n s}(G)=g_{\mathrm{ts}}(G)$.
Proof. Let G be a n-barbell graph. Obviously $g(G)=g_{n s}(G)=g_{\mathrm{ns}}(G)=2$ ($n-1$).

REFERENCES:

[1] AbdollahzadehAhanger. H, Vladimir Samodivkin "The total geodetic number of a graph"Article in utilitas mathematics January 2016.
[2] Antony Xavier, Andrew Arokiaraj, Elizabeth Thomas "Doubly geodetic number of a Graph"IOSR Journal of mathematics (IOSR - JM).
[3] ArashBehzad, Mehdi Behzad ,Cleryl E. Praeger "Fundamental Dominations in Graphs"arXiv:0808.4022vl [math.CO]29 Aug 2008.
[4] Frank Harary and Ping Zhang "Geodetic sets in Graphs" Discuss.Mth , Graph Theory 20(2000) 129-138
[5] TejaswiniK.M ,Venkanagouda M Goudar "Nonsplit Geodetic Number of a Graph" International J. Math .combinvol .2(2016), 109-120.

