	VOLUME-8, ISSUE-5, MAY-2019 • PRINT ISSN No. 2277 - 8160	
Shull FOR RESEARCH	Original Research Paper	Mathematics
Thernational	TOTAL NONSPLIT GEODETIC NUMBER IN GRAPHS	
Dr. A. Vijayalekshmi	Associate Professor in Mathematics, S. T. Hindu Tamilnadu, India.	u College, Nagercoil-629 002,
Aksha S. S Jilu*	M. Phil Scholar, Department of Mathematics, S.T. Hin Tamilnadu, India. *Corresponding Author	ndu College, Nagercoil-629 002,
ABSTRACT geodetic number of G and is denoted by $g_{ts}(G)$. In this paper we obtain a relationship between nonsplit geodetic number and the total nonsplit geodetic number of G. Also we find the total nonsplit geodetic number of some classes of graphs.		

KEYWORDS : Geodesic, geodetic set, geodetic number, nonsplit geodetic set, nonsplit geodetic number, total nonsplit geodetic number.

1.INTRODUCTION:

All graphs considered in these paper are finite, undirected, simple graphs. We denote the vertex set and the edge set of a graph G by V(G) and E(G) respectively. For a vertex v of G, the eccentricity e(v) is the distance between v and a vertex farthest from v.The minimum eccentricity among the vertices of G is the radius, rad G, and the maximum eccentricity is the diameter, dim G. A *u-v* path of length d(u,v) is also referred to as a u-v geodesic. We define I[u,v] to the set of all vertices lying on some u-v geodesic of G and for a nonempty subset S of V(G), $I[S] = \bigcup_{u,v \in s} I[u,v]$. A set S of vertices of G is called a geodetic set in G if I[S]=V(G). The geodetic number q(G) is the minimum cardinality of a geodetic set of G. A set of vertices S in a graph G is a nonsplit geodetic set if S is a geodetic set and the induced subgraph < V(G) - S > is connected. The minimum cardinality of a nonsplit geodetic set, denoted $g_{ns}(G)$ is called the nonsplit geodetic number of G. The nonsplit geodetic set S of a graph G is said to be total nonsplit geodetic set if the induced subgraph < S> has no isolated vertices. The cardinality of a minimum total nonsplit geodetic set in G is called total nonsplit geodetic number of a graph and is denoted by $g_{tns}(G)$. We denote a path on n vertices and a cycle on n vertices by P_n and C_n respectively. A path on n vertices is a tree with two vertices of degree 1 and the other (n-2) vertices are of degree 2. A wheel graph W_n is a graph n vertices constructed by connecting a single vertex to every vertex in an (n-1) cycle. The (m, n)-tadpol graph also called a dragon graph is the graph obtained by joining a cycle graph C_m to a path graph P_n with a bridge. The Cartesian product G H of graphs G and H is a graph with the vertex set is the Cartesian product $V(G) \times V(H)$ and two vertices (u, u') and (v, v') are adjacent in G Hiff either u = v and u' is adjacent to v' in H or u'=v' and u is adjacent to v in G. The n-ladder graph can be defined as P₂ P_n. It is therefore equivalent to the 2×n grid graph. The n-book graph is defined as the Cartesian product $S_m+1 P_2$, where Sm is a star graph. The fan graph $F_{m,n}$ is defined as the graph join $\overline{K}_m + P_n$ where \overline{K}_{m} is the empty graph on m nodes. A n-barbell graph is the simple graph obtained by connecting two copies of a complete graph K, by a bridge. We use this idea to develop the concept of total nonsplit geodetic number.

2. Main Results:

Definition 2.1: The geodetic set S is said to be a total nonsplit geodetic set if the subgraph induced by S has no isolated vertices and the induced subgraph < V(G)- S > is connected. The minimum cardinality of a total nonsplit geodetic set is called the total nonsplit geodetic number of G and is denoted by $g_m(G)$.

For this graph G, S={ v_{11} v_{32} v_{52} v_{6} } is a total nonsplit geodetic set. Therefore $g_{trs}(G)$ =4.

Theorem 2.2. For any path graph G of order n>4, $g_{tns}(G)=4$.

Proof. Let $V(G) = \{v_1, v_2, ..., v_n-1, v_n\}$ be the vertices of the path graph G. Let $S = \{v_1, v_2, v_n-1, v_n\}$ be the total nonsplit geodetic set of G and I[S]=V(G). The induced subgraph $\langle S \rangle$ has no isolated vertices and the subgraph induced by $\langle V(G) - S \rangle$ is connected. Therefore S is the minimum total nonsplit geodetic set of G. Hence $g_{inv}(G)=4$.

Theorem 2.3. For the cycle C_n , $n \ge 4$, $g_{ins}(C_n) = \lfloor \frac{n}{2} \rfloor$

Case(I): When n is even

Consider { $v_1, v_2, ..., v_{an}, v_n$ } be the cycle with 2n vertices. Let $S = {v_1, v_{an}, v_n}$ with an onsplit geodetic set of C_{an} . For any two antipodal vertices v_1 and v_i and { $v_2, ..., v_i-1$ } are the internal vertices of $v_1 - v_i$. Since no two vertices of S form a total nonsplit geodetic set, there exists a total nonsplit geodetic set contains $\frac{n}{2}+1$ vertices. Therefore Therefore I[S]=V(C_{an}). Since $v_1 - v_i$ is a path, the subgraph induced by S has no isolated vertices and the induced subgraph < V(G) - S > is connected. Therefore S is the minimum total non split geodetic set of C_{an} . So $g_{us}(G)(C_{an})=|S|=[\frac{n}{2}+1]$

Case(ii): When n is odd.

Consider { $v_{i_1}v_{2_1}$..., v_{2n+1} , v_i } be a cycle with 2_{n+1} vertices. Let $S = {v_{i_1}v_{2_2}$..., $v_{j_r}v_{i_{r+1}}$ } be a total nonsplit geodetic set of C_{2n+1} . Then the paths, $v_1 - v_{i+1}$ and $v_i - v_{i+1}$ includes all the vertices of C_{2n+1} , $|S| = [\frac{n}{2} + 1]$ Therefore I[S]=V(C_{2n+1}). The subgraph induced <S > has no isolated vertices and the induced subgraph < V(G) - S > is connected. Therefore S is the minimum total nonsplit geodetic set of C_{2n+1} , $g_{trs}(C_{2n+1}) = |S| = [\frac{n}{2} + 1]$. Hence $g_{trs}(C_{r}) = [\frac{n}{2} + 1]$

Theorem 2.4. For any wheel graph Wn of order $n \ge 5$, $g_{tns}(W_n) = n-2$.

Proof. Let $W_n = K_1 + C_{n-1} (n \ge 5)$ with *x* be the vertex of K_i and $V(C_{n-1}) = \{v_1, v_2, \dots, v_{n-1}\}$. Let $S = \{v_1, v_2, \dots, v_{n-2}\}$ be the total nonsplit geodetic set of W_n . Then any path $v_i - v_j$, $ij = \overline{1(n-2)}$ include all the vertices of W_n , $I[S]=V(W_n)$. Since $v_1 - v_n - 2$ is a path the subgraph induced by *S* has no isolated vertices. The remaining vertices of W_n are v_{n-1} and *x* is connected. Thus *S* is the minimum total nonsplit geodetic set of W_n . Therefore $g_{ms}(W_n) = |S| = n-2$.

Teorem 2.5. For any tadpole graph G of order $n \ge 1, m \ge 3$,

 $g_{tns}(G) = \begin{cases} g(G) + 1 & \text{if } m \text{ is odd} \\ g(G) + 2 & \text{if } m \text{ is even} \end{cases}$

Proof. We prove this theorem by the following cases.

Case(I): When m is odd

Consider { v_1, v_2, v_{m+n} } be the vertices of G. Suppose $S={v_1, v_2, v_{m+n}}$ be the geodetic set of G. It is clear that <V(G) - S > is connected. Thus S is a nonsplit geodetic set. But <S > hasisolated vertices , S not a total geodetic set. Let $S' = S \cup {v_{m+n-1}}$. Clearly < S' > has no isolated vertices. Hence S' forms a minimal total nonsplit geodetic set. This follows that |S'| = |S| + 1 implies that $g_{ms}(G) = g(G) + 1$.

Case (ii): When m is even.

Consider $\{v_1, v_{2'}, v_{m+n}\}$ be the vertices of a tadpole graph. Now consider $S = \{v_1, v_{m+n}\}$ be the geodetic set of G and it is clear that < V(G) - S > is connected. Thus S is a nonsplit geodetic set. But <S > has an isolated vertices. Therefore consider $S' = S \cup \{v_2, v_{m+n-1}\}$ such that <S' > has no isolated vertices and < V(G) - S > is connected. Thus S' forms a minimum total nonsplit geodetic set. This follows that |S'| = |S| + 2 implies that $q_{m_n}(G) = q(G) + 2$.

Theorem 2.6. For any ladder graph G of order $n \ge 3$, $g_{tns}(G) + g_{tns}(G)$.

Proof. Let G be a ladder graph and let $V(G) = \{v_1, v_2, \dots, v_n - 1, v_n\}$. In the ladder graph the geodetic set $S = \{v_1, v_n\}$ is not a total nonsplit geodetic set because $\langle S \rangle$ has isolated vertices. Therefore let us consider $S' = \{v_1, v_2, \dots, v_n - 1, v_n\}$. Now all the vertices of G lies in the geodetic of vertices of S' and $\langle V(G) - S' \rangle$ is connected. Thus forms a total noppsplit geodetic set. Implies $g_{trac}(G) = S' = 4 = g(G) + g_{ns}(G)$.

Theorem 2.7. Let $G = Kn - e, n \ge 3$. Then $g_{tns}(G) = 3$.

Proof. Let $\{v_1, v_2, \dots, v_n-1, v_n\}$ be the vertices of G. Let $S=\{v_1, v_n\}$ be such that degree (v_1) =degree (v_n) =n-2 and I[S]=V(G). Clearly S is a nonsplit geodetic set but the induced subgraph <S> has isolated vertices. Therefore consider $S'=S\cup\{v_1\}$, where $2 \le i \le n-1$ such that $\langle S' >$ has no isolated vertices and $\langle V(G) - S' >$ is connected. Thus S' forms a minimum total nonsplit geodetic set. Therefore $g_{tm}(G)=|S'|=3$.

Theorem 2.8. For any book graph G of order $n \ge 2$, $g_{tns}(G) = r(G) + n$.

Proof. Let { $v_1, v_2, ..., v_{2n+2}$ } be the set of all vertices of G and let $S={v_1, v_2, v_2, v_4, v_6, ..., v_{2n}}$ } be the geodetic set. Clearly |S|=n+1. Then < V(G) - S > is connected S is a nonsplit geodetic set. But <S > has isolated vertices. Let $S'=S \cup \{v_{2n+2}\}$. Then <S' > has no isolated vertices. Thus S' forms a minimum total nonsplit geodetic set. It follows that S' =n+1+1=n+2.Implies $g_{ins}(G)=n+2$. We have for any book graph, r(G)=2. Therfore $g_{ins}(G)=r(G)+n$.

Theorem 2.9. For any fan graph G of order $m \ge 1, n \ge 3, g_{tree}$

$$(G) = \begin{cases} n & \text{if } m = 1 \\ m+1 & \text{if } m \ge 2 \end{cases}$$

Proof. We prove this theorem by the following cases.

Case (I): When m=1

Consider { $v_1, v_2, ..., v_{n+1}$ } be the vertices of G. Now $S = {v_1, v_3, ..., v_n}$ be the nonsplit geodetic set.Clearly I[S]=V(G). But $\langle S \rangle$ has an isolated vertices. So $S' = S \cup {v_2, v_4, ..., v_{n-1}}$. Then $\langle S' \rangle$ has no isolated vertices. Thus S' forms a total nonsplit geodetic set of G with minimum cardinality.Therefore $g_{ins}(G) = \frac{n}{2} + \frac{n}{2} = n$.

Case (ii): When m≥2

Consider { v_{11}, v_{22}, v_{m+n} } be the vertices of G. Let $S={v_{11}, v_{22}, ..., v_{m+n-1}, v_{m+n}}$ be the nonsplit geodetic set. Now consider induced subgraph <S>.

Clearly $\langle S \rangle$ has isolated vertices. Let $S' = S \cup \{v_{m+n}\}$. Thus S' forms a minimum total nonsplit geodetic set. Therefore $g_{mn}(G) = |S'| = m+1$.

Theorem 2.10. For any graph of order n, $g_{ns}(G) \le g_{tns}(G)$.

Proof. Let G be any graph with V(G)={ $v_1, v_2, ..., v_n$ }. Let S V(G) be a nonsplit geodetic set of G. If the induced subgraph<S>has no isolated vertices, S itself is a total nonsplit geodetic set and therefore $g_{ns}(G) = g_{trn}(G)$. Otherwise choose a minimal subset S' V(G)-S such that induced subgraph < V(G) - (S U S') > is connected and the induced subgraph<S U S' has no isolated vertices. Clearly S U S' is total nonsplit geodetic set of G and so $g_{ns}(G) < g_{trn}(G)$. Hence $g_{ns}(G) \leq g_{trn}(G)$

Theorem 2.11. For a n-barbell graph G, $g(G) = g_{ns}(G) = g_{tns}(G)$.

Proof. Let G be a n-barbell graph. Obviously $g(G) = g_{ns}(G) = g_{tns}(G) = 2$ (*n*-1).

REFERENCES:

- AbdollahzadehAhanger. H, Vladimir Samodivkin "The total geodetic number of a graph" Article in utilitas mathematics January 2016.
- [2] Antony Xavier, Andrew Arokiaraj, Elizabeth Thomas "Doubly geodetic number of a Graph" IOSR Journal of mathematics (IOSR – JM).
- [3] ArashBehzad , Mehdi Behzad , Cleryl E . Praeger "Fundamental Dominations in Graphs" arXiv:0808.4022VI [math.CO] 29 Aug 2008.
- Frank Harary and Ping Zhang "Geodetic sets in Graphs" Discuss.Mth , Graph Theory 20(2000) 129-138
 Triscussie M. Veokongeoude M. Couder "Negraphic Conduction Number of a Craph"
- TejaswiniK.M ,Venkanagouda M Goudar "Nonsplit Geodetic Number of a Graph" International J. Math. combinvol.2(2016), 109-120.