
1 INTRODUCTION
For multi-objective optimization problems (MOPs), it is 
necessary to optimize many conicting problems concurrently 
so as to achieve the best overall effect. Owing to the 
contradiction of objectives, there is usually to single optimal 
solution but a set of solutions，called the Pareto set. In the real 
world, it is not uncommon to face multiple objectives 
simultaneously, such as water resource engineering [1], 
industrial scheduling problem [2], control system design [3] 
and so on [4]. Evolutionary algorithms (EAs) are considered to 
be very suitable for MOPs because of their population-based 
characteristics and the approximation of Pareto sets can be 
obtained in a single run. In the past decades, many multi-
objective evolutionary algorithms (MOEAs) have been 
proposed. Multi-objective evolutionary optimization 
algorithms can be roughly divided into three categories. 

Many multi-objective optimization algorithms based on 
Pareto dominance, e.g., strength Pareto evolutionary 
algorithm [5, 6] and nondominated sorting genetic algorithm 
[7, 8]. These algorithms use the dominant relation of solutions 
as the rst selection condition to ensure the selection of 
convergent Pareto solution sets. Then, the second selection 
strategy is adopted to ensure the diversity of solution sets. 
Unlike dominance-based MOEAs, indicator-based 
evolutionary algorithms (IBEAs) [9] is also popular, e.g., 
hypervolume indicator [10], R2 indicator [11]. Indicator 
parameters are used to solve convergence and distributed 
performance problems of solution sets. Different from the rst 
two kinds of multi-objective evolutionary algorithms, 
decomposition-based multi-objective evolutionary algorithms 
are proposed. A typical algorithm is MOEA/D algorithm [12], 
in addition, there are a great many of variants algorithms, 
e.g., [13, 14]. The MOEA/D algorithm converts the multi-
objective optimization problem into a scalar subproblem and 
obtains the value of the decomposed single objective function. 
And this algorithm has been demonstrated efcient in solving 
MOPs. Generally speaking, these algorithms have two 
common but often contradictory goals: minimizing the 
distance of solutions to the optimal frontier and maximizing 
the distribution of solutions at the optimal frontier. 

Although MOEA/D algorithm can get good Pareto frontier. 
However, when the number of non-dominated solutions is 
more than the number of selected solutions, more than the 
number of solutions will be deleted randomly. This is not 
conducive to preserving the best individuals, and will reduce 
the convergence of the solution. In order to solve the above 
problems, we adopt different deletion strategies to increase 
the convergence and diversity of the nal approximate Pareto 

frontier. At the same time, for the operation that MOEA/D 
offspring may replace more than one parent, this paper 
adopts the strategy of rst substitution and stop [14].

The rest of this paper is organized as follows. Section 2 briey 
reviews the related basic concepts and the MOEA/D 
algorithm. In section 3, the strategy of differentiated deletion 
and the improved algorithm of MOEA/D-DFS are introduced 
concisely. Section 4 shows the results and analysis of the 
proposed algorithm. Section 5 concludes this paper with a 
summary.

2 Preliminaries and Background
2.1. Basic Concepts
Generality, an MOP maybe stated as minimization problem 
and dened as follows:

(1)where x denotes a solution vector in the feasible solution 
space Ω, and f (i = 1, 2, …, M) is the ith objective to be i

minimized.

Then, basic concepts used in multi-objective optimization 
problem will be briey introduce.

Denition 1: iff i {1, 2, …, M}, f (u) ≤ f (v), and j {1, 2, …, M}, f (u) i i i

< f (v). In this case, vector u is said to dominate another vector i

v, denoted by  .  u p  v

Denition 2: , the decision vector x*Î Ω is the iff,*xxx$ÎW/p
Pareto optimal.

Denition 3: the Pareto optimal set, PS, is the non-dominated 
solution set. 

Denition 4: the Pareto frontier, PF, is the objective function of 
the non-dominated solutions.

2.2. Introduce of MOEA/D
In the paper of MOEA/D algorithm, three based on 
decomposition approaches are introduced. It includes 
Chebyshev decomposi t ion approach,  and has a 
corresponding weight vector for any Pareto optimal solution. 
Therefore, different Pareto optimal solutions can be obtained 
by altering the weight vector.

The process of MOEA/D algorithm is as follows:
In the initialization part, the population P with the scale of N is 
generated randomly, and the weight vector λ , …, λ  are 1 n

uniformly distributed. Meanwhile, the nearest T individuals of 
each individual can be obtained by Euclidean distance, and 
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the nearest T neighborhood individuals of each individual can 
be obtained. Then, the objective function value of each 
individual and the ideal point z of the population are 
obtained. The non-dominant solution in the population is 
called elite population EP.

In the update part, the paternal population generates the 
offspring population P by genetic operators. Two paternal 
individuals are randomly selected from their neighborhoods. 
Then, using simulated binary crossover (SBX) and polynomial 
mutation operation (PM) to generate offspring. The offspring 
individual are compared with the individuals in the 
neighborhood of the paternal generation. When the offspring 
individuals are superior to the paternal individuals, the 
offspring individuals replace the paternal. The ideal point is 
updated and the non-dominant solution set EP in the updated 
population is selected. Combining EP and EP, the nal non-
dominant solution set is selected.

The update part is iterated until the stop condition is satised, 
and then the nal EP is obtained.

Since in the update section, one offspring may replace more 
than one parent, which will reduce the diversity of the 
population. In this paper, we adopt the replacement operation 
of rst substitution and stop.

3 Proposed Algorithm
In this section, the proposed-- deposition-based multi-
objective evolutionary algorithm with differential selection 
strategy (MOEA/D-DFS) will be introduced in detail.

Algorithm 1: MOEA/D-DFS

Input: N: Population Size; T: the number of the weight vectors 
in the neighborhood of each weight vector.

Output: EP: Elite Population.
1. Generate an initial population P randomly.
2. Generate a uniform spread of N weight vectors λ , …, λ .1 n

3. Work out the T closet weight vectors to each weight vector. 
For each i= 1, …, N, set B(I) = {b , …, b }, where λ , …, λ1 T b1 bT 

are the T closest weight vectors to λi

4. Initialize the ideal point z*.
5. Initialize the elite population (EP)
6. While the termination criterion is not satised do
7.  For i = 1, …, N
8. R  andomly select two indexes k, l from B(I), and generate a 

new solution y.
9. Compare offspring y with the T closet points of its parent 

using Tchebycheff values.
10. Update the ideal point z*.
11. Update of population P.
12.  Get a new elite population EP.
13. Merge EP into EP and adopt differential selection strategy 

to obtain individuals.
14. End for 
15. End while 

The pseudo-code of MOEA/D-DFS is given in Algorithm 1. 
Steps 1-5 are the initialized part. The population P with size N 
is initialized in step 1. Step 2 is to generate a uniformly 
distributed weight vector λ= {λ  = (λ , …, λ ) | i  (1, …, N)}, i i1 im

where λ  = 1. In step 3, the T closest weight vectors B(i) = {b , b , i 1 2

…, b } of each weight vector are calculated, using the T

Euclidean distance. In step 4, the ideal point z* = {z , …, z }is 1 m

initialized, and ts updated during the search process. In step 
5, the elite individuals in the population are preserved in EP, 
that is to say, the non-dominant solution in the population is 
selected.

Steps 6-15 are iterated until the termination criterion is 

satised. In step 8, simulated binary crossover (SBX) [] and 
polynomial mutation are applied as the crossover operation to 
produce offspring. This cross mutation drives two parents 
generate an offspring. Comparing the generated offspring 
with the individuals in the T neighborhood of the parent 
generation, the replacement operation of the current 
individual will be stopped when the replaceable parent 
generation is rst encountered in step 9. It is conducive to 
preserving the diversity of the population. In step 10,the ideal 
point z* is updated. Then the population is updated in step 11. 
In step 12, The non-dominant solution set of the new 
population is obtained, which is denoted as EP. 

In step 13, EP and EP are combined to adopt differential 
selection strategy to obtain individuals. The obtained solution 
is stored in EP. This strategy adopts the method of NSGA-II [7] 
to select the solution. The solutions in EP are sorted non-
dominantly (F , F , …,) and selected layer by layer. The 1 2

selection process is as follows:

Initial Q is an empty set, which merges individuals into Q layer 
by layer according to non-dominant sorting. When F  merges i

into Q and the number of individuals in Q is larger than the set 
number, select individuals in F  layer and put them into Q, so i

that the number of individuals in Q is equals to the set number. 
The crowding distance [7] is used when selecting individuals 
in F . In this way, the Q obtained is the elite population selected i

from the population, where EP = Q.

RESULTS AND ANALYSIS
4.1 Unconstrained ZDT Problems
ZDT test function series is used to verify the effectiveness of the 
proposed MOEA/D-DFS algorithm. Next, ZDT test function 
series.is introduced.

Table 1. ZDT test function

4.2 Metric and Setting
The inverted generational distance (IGD) is a comprehensive 
performance evaluation index. It is used to evaluate the 
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convergence and distribution performance of algorithm. IGD 
is one of the most widely used indicators [15]. The true Pareto 
frontier is needed to calculate the IGD value of the obtained 
solution set. For ZDT test function, the IGD calculation 
requires normalizing the given set of solutions at ideal and 
extreme points. For any algorithm, the nal nondominated 
solutions is named S and the true Pareto frontier is named Z. 
Then, the IGD metric is calculated as follows:

Where d(z , s ) is the Euclidean distance between the points z  i i i

and s . The smaller the value of IGD, the better S.i

In order to ensure the reliability of the experiment results, the 
parameters of the algorithm are set as follows. The number of 
population individuals P is set to 100, which means N = 100. 
The number of iterations It is set to 250. The probability of 
crossover CR is set to 0.5 and the probability of mutation F is 
set to 0.02. The maximum value of T closet neighborhood is set 
to 15, and minimum value of T is set to 2. Generally, the 
neighborhood size T is set to T = 0.1N.

4.3 Analysis
Table 2 shows the experimental results of MOEA/D-DFS 
algorithm and MOEA/D algorithm on test functions ZDT1-4 
and ZDT6. Static analysis is used to judge the performance of 
each algorithm by using IGD value. The smaller the IGD 
values, the better the performance of the algorithm. Table 2 
shows that the performance of the MOEA/D-DFS algorithm is 
better than that of the MOEA/D algorithm on the whole. 

Table 2. The IGD (Min, Avg, Max) values of the MOEA/D-DFS 
and MOEA/D algorithms on test functions ZDT1, ZDT2, 
ZDT3, ZDT4, and ZDT6.

Figure1 shows the approximate Pareto frontier obtained by 
MOEA/D-DFS algorithm and MOEA/D algorithm on ZDT test 
function. from the comparison chart of Fig1, the improved 
algorithm MOEA/D-DFS gives better approximate Pareto 
frontier. Compared with MOEA/D algorithm, the convergence 
and distribution of MOEA/D-DFS are excellent. Although the 
ZDT2 test function does not obtain a good enough set of 
solutions, compared with the MOEA/D algorithm, a sufcient 
number of solutions are obtained. Obviously, on the test 
functions ZDT1, ZDT3, ZDT4 and ZDT6, the solution set 
obtained by MOEA/D-DFS has better convergence and 
distribution than that obtained by MOEA/D algorithm.

Figure 1. the approximate Pareto frontier obtained by 
MOEA/D-DFS algorithm and MOEA/D algorithm on the ZDT 
test function.

5 CONCLUSION
In order to achieve a good balance between convergence and 
diversity, this paper proposes an algorithm, MOEA/D-DFS, 
which adopts differently selecting strategy for population. 
This strategy adopts the non-dominated sorting method and 
gives priority to the selection of good individuals, which is 
conducive to enhancing the convergence of the nal solution 
set. Meanwhile, it is benecial to enhance the diversity of the 
population by using the rst encounter and stop substitution 
operation. To prove the effectiveness of the proposed 
algorithm, the MOEA/D-DFS algorithm and MOEA/D 
algorithm are compared with ZDT series of test functions. 
Experiments show that the proposed algorithm can obtain 
good convergence and distribution solutions for different 
optimization problems.
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ZDT1 Min 0.01001 0.05076

Avg 0.040336 0.43379

Max 0.040336 0.95388

ZDT2 Min 0.00227 0.00008
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Max 0.74984 0.00640

ZDT3 Min 0.04068 0.16221

Avg 0.25665 0.46492

Max 0.38568 0.97953

ZDT4 Min 0.73323 15.09150

Avg 10.72729 24.05082

Max 24.1546 40.12033

ZDT6 Min 0.00952 0.00011

Avg 1.39815 2.00117

Max 4.12405 5.34535


