VOLUME - 9, ISSUE - 8, August - 2020 • PRINT ISSN No. 2277 - 8160 • DOI : 10.36106/gjra

 Original Research Paper
 Botany

 HERBACEOUS DIVERSITY OF K.A.H.M. UNITY WOMEN'S COLLEGE, MANJERI, KERALA, INDIA

 Fasna Sherin K
 P.G. Department of Botany, K.A.H.M. Unity Women's College, Manjeri, Malappuram, Kerala, India

 Usman A*
 P.G. Department of Botany, K.A.H.M. Unity Women's College, Manjeri, Malappuram, Kerala, India

ABSTRACT The study was conducted at the Korambayil Ahamed Haji Memorial Unity Women's College, which is situated in the Manjeri Municipality of Malappuram district, Kerala State. The present study was aimed at determining the herbaceous plant species richness of the K.A.H.M.Unity women's college. For this, the species richness data was obtained by both secondary sources and intensive surveys from 2019 - 2020. The data from the primary and secondary sources resulted in the documentation of 91 species of herbs belonging to 74 genera under 34 families.Out of 91 plants, 91 were Angiosperms. Among the angiosperms there were 64 dicots under 28 family and 27 monocots under 6 family. The contribution of dicotyledons was 70.32% and monocotyledons 29.67%. Poaceae was the most dominant family with 12 species and 10 genera. The dominance of plants from Poaceae family in the study site, supports the harsh environmental conditions especially the water stress, because these plants have made morphological, anatomical and a physiological modifications to overcome the drought conditions. At present time, several of the important plant species are on verge of depletion, therefore such type of studies shall be paid serious attention for future prospects and to understand environmental conservation efforts. It also observed that successful strategies for management of useful species would be beneficial for future prospects.

KEYWORDS : Manjeri, Herbaceous species richness, moist deciduous vegetation.

INTRODUCTION

A nation's growth starts from its educational institutions, where the ecology is thought as a prime factor of development associated with environment. The green campus concept offers an institution the opportunity to take the lead in redefining its environmental culture and developing new paradigms by creating sustainable solutions to environmental, social and economic needs of the mankind (Sen & Keshari, 2019). Appropriate conservative policies and sustainable development strategies are integral approach towards biodiversity. Biodiversity keeps the ecological processes in a balanced state, which is necessary for human survival (Kaur & Sharma, 2014). As biodiversity equals variety at the species level of biological organization, the terms species richness and species diversity have become key concepts in conservation biology. The plant diversity at any site is influenced by species distribution and abundance patterns (Reddy et al., 2014). Both concepts are important characteristics of community structure. Therefore, much has been published on the measurement of the species richness and species diversity of communities (MacArthur, 1955; Hurlbert, 1971; Peet, 1974; Pielou, 1975; Magurran, 1988, 2004; Schluter & Ricklefs, 1993; Colwell & Coddington, 1994; Krebs, 1999). In the present work is designed with an objective to study the herbaceous diversity and documentation of campus flora.

STUDY AREA

Malappuram, one of the districts in Kerala, was formed in 1969. The geographical area of the district is 3,550 sq. km. It is the third largest district of Kerala, as it occupies 9.13 per cent of the total area of the state. Manjeri is a town and municipality in Malappuram District in the state of Kerala with an extent of 53. sq.km out of the 7 taluks of Malappuram district. Manjeri is the headquarters of Ernad taluk. It is the second widest municipality in Kerala. The campus lies in 11° 07' 10" North latitude and 76° 07' 71" East longitudes. The terrain is laterite rocky. The characteristically hilly and undulating land is having an expanse of nearly 60 acres. The vegetation is a degraded moist-deciduous one. It was a barren hill at the time of inception of the college. Now the area is with plentiful trees planted by the nature clubs and other student community during the last three decades.

METHODOLOGY

The present study is the preliminary effort to collect and identify the Herbal Flora of K.A.H.M. Unity Women's college, Manjeri. The systematic collection of Herbs was made from various localities of college campus by visiting areas frequently. All mature, intact and undamaged herbal species were collected from college campus during the period from February 2019 to January 2020. The details were recorded in the field book and colour photographs were taken. Collected plant specimens were dried and preserved plants mounted on herbarium sheets by adhesive glue and fevicols. Identification of plants done with the help of Flora of the Presidency of Madras (Gamble, 1915-1936), Flora of British India (Hooker, 1872-1897), Flora of Malappuram (Babu, 1990), etc. Interactive CDs such as Flowering Plants of Kerala and Tree Identification Key prepared by Dr. N. Sasidharan of Kerala Forest Research Institute were also used for identifying specimens. Nomenclatural and phenologic details of the specimens were collected from these CDs. Photographs and herbaria of some unidentified specimens were sent to experts for confirming the identity.

RESULTS & DISCUSSION

Herbaceous plant species are important components of ecosystems. Herbs are variable in their presence as well as presence of certain chemical compounds in their body system. The present study was aimed at assessing the herbaceous plant diversity. Total 91 plant species belonging to 34 families and 74 genera were recorded from the study site. Out of 91 plants, 91 were Angiosperms. Among the angiosperms there were 64 dicots under 28 family and 27 monocots under 6 family. The contribution of dicotyledons was 70.32% and monocotyledons 29.67%. Poaceae was the most dominant family with 12 species and 10 genera. According to the abundance of herbaceous angiosperms in the campus, it has been observed that the Family Poaceae is most abundant followed by Asteraceae and Cyperaceae also shows wide range of vegetation in all over the area. At Genus level, Cyperus is largest with 4 species followed by Commelina and Lindernia with 3 species. Genus Eragrostis, Pennisetum, Phyllanthus, Mitracarpus, Sida, Euphorbia, Evolvulus, Cleome, Justicia and Asystasia with 2 species each. Remaining 61 genera are represented by only single species.

VOLUME - 9, ISSUE - 8, August - 2020 • PRINT ISSN No. 2277 - 8160 • DOI : 10.36106/gjra

Fig.1.Bar diagram showing the representation of the families.

Table 1. Showing dicot species richness.

DICO	TYLEDONS
Family	Plant species
Acanthaceae	Asystasia dalzelliana
	 Asystasia gangetica
	 Justicia procumbens
	 Justicia simplex
	Ruellia prostrata
Amaranthaceae	Achyranthus aspera
	• Aerva lanata
	Alternanthera sessilis
Apocynaceae	Catharanthus pusillus
Asteraceae	 Ageratum conyzoides
	Crassocephalum
	crepidioides
	 Eclipta alba
	Emilia sonchifolia
	Senecio vulgaris
	Synedrella nodiflora
	 Iridax procumbens
D1 ·	Vernonia cinerea
Balsaminaceae	Impatiens minor
Caryophyllaceae	Polycarpae corymbosa
Cleomaceae	Cleome rutidosperma
	Cleome viscosa
Convolvulaceae	Evolvulus alsinoides
	Evolvulus nummularius
	Merremia tridentata
Euphorbiaceae	Acalypha indica
	• Croton hirtus
	Luphorbia heterophylia Euphorbia histor
	Lupiloibid IIIid Migrostachus chamaolog
	Tragia involucrata
Fabaceae	Chamaecristamimosoids
Tubaccuc	Desmodium triflorum
	Mimosa pudica
Gentianaceae	Canscora pauciflora
Lamiaceae	Hyptis suggeolens
Lamacouo	Leucas aspera
Linderniggege	Lindernia ciliata
	Lindernia crustacea
	Lindernia viscosa
Loganiaceae	Mitrasacme pyamaea
Malvaceae	Sida acuta
	Sida cordifolia
	Waltheria indica
Melastomataceae	Osbeckia muralis
Meliaceae	Naregamia alata
Molluainaceae	Mollugo pentaphvlla
Orobanchacege	Strigg angustifolig
Ovalidação	Biophytum consitiuum
Oxunducede	Oxalis corpiculata
Phyllanthaceae	Phyllonthus amorus
i nynanniaceae	Phyllanthus viractus
Piperaceae	Peperomia pellucida
i ibeincene	i eperonna penaciaa

Rubiaceae	Mitracarpus hirtus
	Mitracarpus verticillatus
	Oldenlandia corymbosa
	Spermacoce articularis
Scrophulariaceae	 Scoparia dulcis
-	 Sopubia delphinifolia
Solanaceae	 Physalis minima
Urticaceae	 Pilea microphylla
	 Urtica parviflora
Verbenaceae	Priva cordifolia
	 Stachytarpheta indica
Violaceae	• Hybanthus enneaspermus

Table 2. Showing monocot species richness:

MONOCOTYLEDONS		
Family	Plant species	
Amaryllidaceae	Hymenocallis littoralis	
Colchicaceae	 Gloriosa superba 	
Commelinaceae	Aneilema nudiflorum	
	Commelina bengalensis	
	Commelina diffusa	
	Commelina erecta	
	Cyanotis cristata	
Cyperaceae	Cyperus longus	
	 Cyperus paniceus 	
	 Cyperus rotundus 	
	 Cyperus sphacelatus 	
	 Fimbristylis aestivalis 	
	Kyllinga nemoralis	
Orchidaceae	Habenaria grandiflora	
	Zeuxine longilabris	
Poaceae	Dactylotenium aegyptium	
	 Digitaria ciliaris 	
	Echinochloa colona	
	Eragrostis amabilis	
	 Eragrostis unioloides 	
	 Oplismenus hirtellus 	
	 Panicum repens 	
	Paspalum scorbiculatum	
	Pennisetum pedicellatum	
	Pennisetum polystachion	
	Rottboellia exaltata	
	Setaria pumila	

Fig.2. Pie diagram showing herbaceous diversity of campus at Species, Genus, and Family level. Herbaceous diversity

Fig. 3. Bar diagram showing Monocot and Dicot herbaceous diversity. Monocot & Dicot herbaceous diversity

REFERENCES

- Babu, A. (1990). Flora of Malappuram District (excluding Nilambur Forest Division). Parts I & II, Ph. D. Thesis, University of Calicut, Calicut. Colwell, R. K., & Coddington, J.A. (1994). Estimating terrestrial biodiversity through extrapolation; Philos. Trans. R. Soc. London B 345 : 101-118. 1.
- 2.
- GJRA GLOBAL JOURNAL FOR RESEARCH ANALYSIS * 55

VOLUME - 9, ISSUE - 8, August - 2020 • PRINT ISSN No. 2277 - 8160 • DOI : 10.36106/gjra

- 3. Gamble, J.S. & Fischer, C.E.C. (1915-1936). Flora of Presidency of Madras, Adlard & Sons. Ltd., London.
- 4. Hooker, J.D. (1872-1897). The Flora of British India. Vols. I-VII, Reeve & Co. Ltd., London
- Hurlbert, S.H. (1971). The non-concept of species diversity: A critique and 5. alternative parameters. Ecology, 52, 577-586.
- 6. Kaur, K., & Sharma, S. (2014). Diversity and Phytosociological Analysis of Tree Species in Sacred Groves of Vijaypur Block, Samba (J&K). Int. J.Sc.& Res., 6(3), 859-862.
- Krebs, C. J. (1999). Ecological methodology (Menlo Park, CA: Addison 7. Wesley Longman).
- 8. MacArthur, R.H. (1955). Fluctuations of animal populations, and a measure
- of community stability; Ecology, 36, 533-536. Magurran, A.E. (1988). Ecological diversity and its measurement. (Princeton, New Jersey: Princeton University Press). 9.
- 10. Magurran, A. E. (2004). Measuring biological diversity. (Oxford: Blackwell). Peet, R.K. (1974). The measurement of species diversity; Annual Review of Ecology and Sysematics, 5, 285-307.
 Pielou, E.C. (1975). Ecological diversity. (New York: Wiley Inter science).
 Reddy, B., Rao, V.H., Redy, V.B., & Rao, V.V. (2014). Diversity and richness of 11.
- 12.
- 13. herb species in peddagattu, the proposed site for uranium mining, Nalgonda district, Telangana state, India. Global Journal of
- Multidisciplinary Studies, 11(3), 197-204. 14. Sasidharan, N. (2012). Flowering Plants of Kerala Version 2.0. DVD No. 14. Kerala Forest Research Institute, Peechi.
- 15. Schluter, D. & Ricklefs, R. E. (1993). Species diversity: an introduction to the problem; in Species diversity in ecological communities: historical and geographical perspectives (eds) R. E. Ricklefs & D. Schluter (Chicago: The University of Chicago Press).
- Sen, M. & Keshari, K.K. (2019). Green campus report. Directorate of 16. Technical Education, 1-4.