

Original Research Paper

Anaesthesiology

VALIDATION AND REFINEMENT OF THE ADULT DIFFICULT INTRAVENOUS ACCESS SCORE: A CLINICAL PREDICTION RULE FOR IDENTIFYING ADULTS WITH DIFFICULT INTRAVENOUS ACCESS

Dr Rahul Kishore

KEYWORDS:

INTRODUCTION

Peripheral intravenous (iv) cannulation, most common invasive procedure, not easily obtained in all.

- Multiple unsuccessful attempts associated with risksnerve damage, paresthesia, hematoma, arterial puncture.
- So necessary to have a predictive scale which identifies high probability of a difficult iv access.
- Adult-Difficult Intravenous Access (A-DIVA) score, proportionally weighted five-variable.

TABLE 5. Risk Factors, Definition, and the Additive Score

Risk Factor	Definition	Additive Risk Score
Palpable appearance	Is it impossible to identify the target vein by palpating the upper extremity?	1
History of difficult intravenous access	Was it difficult to insert a peripheral intravenous catheter in the past?	1
Visual appearance	Is it impossible to identify the target vein by visualizing the upper extremity?	1
Unplanned indication for surgery	Is the patient at an emergency indication for surgery?	1
Diameter of the vein ≤ 2 millimeters	Does the target vein have a diameter of at most 2 millimeters?	1

- $0-1 \log risk$, $2-3 \mod ium risk & > 4 \mod isk$
- Clinical rule, has been developed to predict failure of intravenous (IV) placement in adult.

AIM OF THE STUDY

- To externally validate A-DIVA scale
- To refine the predictors of A-DIVA scale

METHODOLOGY

Prospective cross-sectional, clinical observational study.

February 2019 to September 2019, MVJ Medical College Ethical committee approval and informed consent was taken.

500 subjects randomly selected

Inclusion criteria:

Aged >18 years irrespective of ASA grade undergoing peripheral IV placement before surgery

Exclusion criteria:

unresponsive patients and whose cannulation already gained in ward Socio- demographic profile sheet Clinical profile sheet A- DIVA scale The outcome of interest was defined as failure of cannulation on first attempt. Scoring of the vein done according to A-DIVA scale

Proposed refinement predictor variables:

skin shade
vein valves
tortuous vein
thrombosed vein
operator experience
site & side of cannulation.

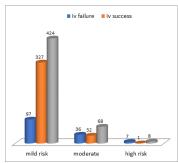
STATISTICAL ANALYSIS

To compare patients regarding primary outcome, chi-square test and unpaired sample T-test were performed as appropriate

- Potential risk factors identified in a univariate logistic regression analysis
- Items with a P < 0.001 were considered as statistically significant with 95% confidence interval(CI).

RESULTS

- Mean age of patients was 42.55 years (SD= \pm 15.06 yrs)
- 28%(140) subjects failed first IV attempt.



The original five-variable model tested statistically significant.

 Hence additive 5-variable A-DIVA scale is a reliable predictive rule that implies the probability to identify patients with a difficult iv access prospectively.

Parameter	IV success	IV failure	T/Chi square value	P value
Visual				
(333	111	17.698	0.000*
1	27	29		
Palpable				
(335	122	5.512	0.019*
1	23	18		
Diameter				
(301	90	22.083	0.000*
1	59	50		
History				
(337	108	27.924	0.000*
1	23	32		
Unplanned				
(344	126	5.516	0.019*
1	16	14		
DIVA total score				
(272	58	71.356	0.000*
1	55	39		
2	16	29		
3	9	14		
4	1	7		

 The scoring system was applied in 3 risk groups as they failed first attempt IV access-

A- DIVA score	Risk grading (N)	IV failure (%)	
0 or 1	Low risk (424)	97 (22 %)	
2 or 3	Medium risk (68)	36 (53 %)	
4 plus	High risk (8)	7 (87 %)	

Addition variables predict failure of IV are:-

Variables	IV	IV	t/ Chi square	P- value
	success	failure	value	
Tortous vein				
Yes	70	49	13.449	0.000*
No	290	91		
Phlebitis				
Yes	14	13	5.747	0.017*
No	346	127		
Valves				
+	68	86	85.584	0.000*
-	292	54		

DISCUSSION

- Difficult intravenous access is a frequently encountered clinical challenge, which has been subject of research in various previous publications.
- Reported success rates of first attempt peripheral IV cannulation varies from 98% to as low as 51%, whereas our study shows an 72% success rate.
- Failure to obtain a peripheral IV access can delay diagnosis and treatment, and may expose patients to risks associated with central venous cannulation.
- No scoring system will precisely predict the outcome for a
 patient. Though, risk stratification helps eliminating bias
 against patients at high-risk for difficult intravenous
 access and may reduce complications related to the
 procedure.
- Early recognition of patients at risk could help in applying alternative approaches, such as infrared(IR) assisted/ ultrasound guided IV catheter placement, to achieve a successful peripheral intravenous access.
- In general, we believe it would not improve efficacy nor be cost-efficient to apply IR/USG devices in all patients.
- Furthermore, the proposed A-DIVA score may also be valuable in the evaluation of (cost-) efficacy and validation of the many venous access devices available in the market
- As this study is a clinical observation study number of success and failure of IV access may alter depending on experience of operator.

CONCLUSION

This study validated the previously derived five variable A-DIVA score.

- Applying the A-DIVA scale to surgical patients may increase the success rate of inserting a peripheral intravenous catheter on the first attempt. Otherwise, it creates a possibility to use other techniques, such as IR/USG, in an earlier time frame.
- Certain newer refinement variables are also found significant may also be helpful.

REFERENCES

- Fredericus H. J. van Loon, Lisette A. P. M. Puijn, Saskia Houterman, et al. Development of the A-DIVA Scale: A Clinical Predictive Scale to Identify Difficult Intravenous Access in Adult Patients Based on Clinical Observations. Md-journal. Medicine_Volume 95, Number 16, April 2016;1-8.
 Yen K, Riegert A, Gorelick M. Derivation of the DIVA score: a clinical
- Yen K, Riegert A, Gorelick M. Derivation of the DIVA score: a clinical prediction rule for the identification of children with difficult intravenous access. Pediatr Emerg Care. 2008; 24:143–7.
 Riker MW, Kennedy C, Winfrey BS, et al. Validation and refinement of the difficult
- Riiker MW, Kennedy C, Winfrey BS, et al. Validation and refinement of the difficult intravenous access score: a clinical prediction rule for identifying children with difficult intravenous access. Acad Emerg Med. 2011; 18: 1129–1134.