
INTRODUCTION
Over the last decade, research on AI in medicine and 
biomedicine and the number of publications in these elds 
have substantially increased. Research has come up with 
promising AI developments in general machine learning (ML) 
algorithms, for manifold applications to predict clinical 
events, to improve diagnoses accuracy as well as treatments, 
and to reduce the burden of disease.   

While a balance between the increasing amount of 
documented data on the one hand and the demographic 
change and aging populations on the other hand challenges 
our health care systems, big data and articial intelligence 
(AI) in medicine offer a huge potential to relieve physicians 
from the increasing complexity of today's health care and 
information overload when treating patients. 

Cardiac amyloidosis (CA), once thought to be rare and 
universally fatal, is now recognized as an important cause of 
heart failure, particularly in patients with preserved ejection 
fraction. Advances in therapy have led to signicant 
improvement in outcomes, but survival is hindered by life-
threatening delays in diagnosis. Whereas more than 30 
proteins may misfold to cause amyloidosis, main types involve 
the heart: light chain associated amyloid (AL), due to a clonal 
plasma cell disorder of the bone marrow; and transthyretin 
amyloid (ATTR), related to misfolding of transthyretin 
produced by the liver result from either an inherited mutation 
in the transthyretin gene (ATTRv) or from “wild-type” 
(genetically normal) transthyretin deposition (ATTRwt). 
Treatment is available for both AL and ATTR amyloidosis and 
is rapidly improving. If it is untreated, cardiac AL amyloidosis 
is rapidly progressive and fatal.

Patients with systemic amyloidosis are commonly evaluated 
by multiple providers before the diagnosis is established, 
often requiring travel to a national center. Early symptoms 
may be vague and attributed to other causes, requiring a high 
index of suspicion. Whereas advances in cardiac imaging 
have improved the diagnosis, classic ndings are not always 
present or may go unrecognized, especially if amyloidosis has 
not been suggested by the referring provider. As cardiac 
involvement in systemic amyloidosis is the most important 
determinant of survival, there is a critical need for early 
diagnosis to promote timely and effective therapy.

Electrocardiogram (ECG)
The electrocardiogram (ECG) is a ubiquitous tool in clinical 
medicine that has been used by cardiologists and non-
cardiologists for decades. 

Although the acquisition of the ECG recording is well 
standardized and reproducible, the reproducibility of human 
interpretation of the ECG varies greatly according to levels of 
experience and expertise. 

This transformative progress has not occurred without 
potential limitations and challenges that require attention. 
Challenges with AI applications are not necessarily unique to 
the ECG and include the need for data quality control, 
external validity, data security and the demonstration of 
superior patient outcomes with the implementation of AI-
enabled tools, such as the AI–ECG. 

Deep-learning methods applied to the ECG
Deep learning is a subeld of machine learning that uses 
neural networks with many layers (hence the term 'deep') to 
learn a function between a set of inputs and a set of outputs. 

The strength of deep neural networks lies in using their ability 
to identify novel relationships in the data independent of 

1-2features selected by a human.  

The agnostic approach in a neural network is an optimal 
representation, but this approach is also non-linear, and the 
learned associations between input and output data are 
unexplainable at present, making the model a black box — 
humans cannot understand how the network makes its 
decisions- which is one of the concerns raised regarding the 
clinical application of deep-learning CNNs. Therefore, less 
agnostic machine-learning models, such as the more 
traditional logistic regression, reinforcement learning and 
random forest models, still hold promise and can help to 
inform research and clinical practice. For example, 
reinforcement learning is a eld of AI providing the framework 
for training of a clinical decision model in which certain 
decisions (model input) under specic conditions are linked to 
long-term outcomes. 

Fig. 1: Development of a convolutional neural network using 
the 12-lead ECG and application to detect silent atrial 
brillation.
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Fully automated interpretation of ECGs
One of the top priorities for the application of AI to the 
interpretation of ECGs is the creation of comprehensive, 
human-like interpretation capability. Since the advent of the 

3-digital ECG more than 60 years ago 4, ongoing effort has 
been towards rapid, high-quality and comprehensive 
computer-generated interpretation of the ECG. The problem 
seems tractable; after all, ECG interpretation is a fairly 
circumscribed application of pattern recognition to a nite 
dataset. Early programs for the interpretation of digital ECGs 
could easily recognize ducial points, make discrete 
measurements  and dene  common quant iable 
abnormalities5-7. Modern technologies have moved beyond 
these rule-based approaches to recognize patterns in massive 
quantities of labelled ECG data8,9.

Several groups have worked to create AI-driven algorithms, 
and some of these algorithms are already in limited clinical 
use10. Some studies have developed CNNs from large 
datasets of single-lead ECGs and then applied them to the 12-
lead ECG. For instance, using 2 million labelled single-lead 
ECG traces collected in the Clinical Outcomes in Digital 
Electrocardiology study, one group used a CNN to identify six 
types of abnormalities on the 12-lead ECG9. This study 
demonstrated the feasibility of this approach, but widespread 
implementation or external validation in other 12-lead ECG 
datasets is forthcoming. Another group conducted a similar 
study of the application of CNNs to single-lead ECGs and 
demonstrated that the CNN could outperform practising 
cardiologists for some diagnoses8. 

In an evaluation published in 2020, a CNN was developed for 
the multilabel diagnosis of 21 distinct heart rhythms based on 
the 12-lead ECG using a training and validation dataset of 
>80,000 ECGs from >70,000 patients11. The reference 
standard consisted of consensus labels by a committee of 
cardiologists. In a test dataset of 828 ECGs, the optimal 
network exactly matched the gold standard labels in 80% of 
the ECGs, signicantly exceeding the performance of a single 
cardiologist interpreter 12. 

This technology will be particularly important as we 
increasingly rely on ECG data obtained through novel, 
consumer-facing applications, which are massively scalable. 
For instance, AI–ECG algorithms have been applied to single-
lead ECG traces obtained through mobile, smartwatch-

-14enabled recordings for the detection of AF13

Nevertheless, although great progress has been made 
towards a comprehensive, human-like ECG-interpretation 
package, the realization remains on the horizon. Even in its 
most modern incarnation, the package lacks the accuracy 
needed for implementation without human oversight15. 
Additionally, computer-derived ECG interpretation has the 
potential to inuence human over-readers and, if inaccurate, 
can serve as a source of bias or systematic error. 

The ECG as a deep phenotyping tool
Interpretation of an ECG by a trained cardiologist relies on 
established knowledge of what is normal or abnormal on the 
basis of more than a century of experience with assessing the 
ECG in patient care and based on our understanding of the 
electropathophysiology of various cardiac conditions. Despite 
the enormous potential to gain insights into cardiac health 
and disease from an expert interpretation of the ECG, the 
information gain is limited by the interpreter's nite ability to 
detect isolated characteristics or patterns tting established 
rules. However, hidden in plain sight might be subtle signals 
and patterns that do not t traditional knowledge and that are 
unrecognizable by the human eye. Harnessing the power of 
deep-learning AI techniques together with the availability of 
large ECG and clinical datasets, developing tools for 
systematic extraction of features of ECGs and their 
association with specic cardiac diagnoses has become 
feasible. Of course, some conditions are not reected in the 

ECG, which even an AI–ECG cannot resolve — even if these 
technologies can see beyond an expert reader's capacity, they 
cannot see what is not there. In this section, we review the 
latest advances in the application of deep-learning AI 
techniques to the 12-lead ECG for the detection of 
asymptomatic cardiovascular disease that might not be 
readily apparent, even to expert eyes.

Detection of LV systolic dysfunction
The systolic function of the left ventricle, traditionally 
quantied as the LVEF by echocardiography, is a key measure 
of cardiac function. A reduced LVEF denes a large subgroup 
of patients with heart failure, but a decline in LVEF can be 
asymptomatic for a long time before any symptoms trigger 
evaluation. Indeed, up to 6% of people in the community might 
have asymptomatic LV dysfunction (LVEF <50%)16. A low 
LVEF has both prognostic and management implications17. 
Detection of a low LVEF should trigger a thorough evaluation 
for any reversible causes that should be addressed in a timely 
fashion to minimize the extent of permanent myocardial 
damage. The early initiation of optimal medical therapy can 
result in improvements in systolic LV function and quality of 
life, but can also reduce heart failure-related morbidity and 
mortality18. 

The potential of the AI–ECG as a marker of asymptomatic LV 
dysfunction has been demonstrated. With the use of linked 
ECG and echocardiographic data from 44,959 patients at the 
Mayo Clinic (Rochester, MN, USA), a CNN was trained to 
identify patients with LV dysfunction, dened as LVEF of ≤35% 

19-25by echocardiography, on the basis of the ECG alone

Detection of silent AF from a sinus-rhythm ECG
AF portends an increased risk of impaired quality of life, 
stroke and heart failure, and results in frequent visits to the 
emergency department and frequent inpatient admissions. 
Among patients with an embolic stroke of undetermined 
source (ESUS), previously called 'cryptogenic stroke', who 
undergo 30-day rhythm monitoring, about 15% are found to 
have previously undiagnosed paroxysmal AF26. In these 
patients, anticoagulation lowers the recurrence of stroke and 
might lower mortality, whereas in the absence of documented 
AF, anticoagulation offers no clinical benet and increases the 
risk of bleeding27 28. However, the diagnosis of AF can be 
elusive because up to 20% of patients are completely 
asymptomatic, and another approximately one-third of 
patients have atypical symptoms29. Moreover, AF is only 
intermittent (or paroxysmal) in many patients. Despite 
extensive research on the topic, the value of screening 
individuals for AF remains a matter of debate, and the US 
Preventive Services Task Force states that the data are 
currently insufcient to recommend routine AF screening in 
general populations30.

In the recent Apple Heart Study31, the largest pragmatic 
evaluation of AF screening in a general population using a 
smartwatch-enabled photoplethysmography technology, 
0.52% of participants received notications of possible AF 
over an average of >3 months of monitoring. 

Patients with at least one ECG showing AF within 31 days after 
the sinus-rhythm ECG were classied as being positive for AF. 
In the testing dataset, the algorithm demonstrated an AUC of 
0.87, sensitivity of 79.0%, specicity of 79.5% and an accuracy 
of 79.4% in detecting patients with documentation of AF using 
only information from the sinus-rhythm ECG32,Additionally, 
this tool can be applied retroactively to digitally stored ECGs 
from patients with a previous ESUS. This algorithm might 
facilitate targeted AF surveillance (such as using an 
ambulatory rhythm-monitoring patch or implantable loop 
recorder) in subsets of high-risk patients. This work is 
preliminary, but we are currently assessing the performance 
of this algorithm in identifying patients who might benet from 
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prospective AF screening or monitoring (with Holter or 
extended monitoring) and, ultimately, various stroke-
prevention strategies. We also note that other groups have 
derived similar AF risk-prognostication tools that examine 
other electrophysiological parameters, such as signal-

34averaged ECG-derived P-wave analysis33- .

AI-enabled ECG and rhythm tools in AF care
In addition to screening individuals for silent AF, CNNs can 
also be developed from ECGs or other rhythm-monitoring 
data (including those derived from permanently implanted 
cardiac devices) for the stratication of stroke risk and the 
renement of decision-making about oral anticoagulant use. 
In an analysis using data from implanted cardiac devices in 
>3,000 patients with AF (including 71 patients with stroke), 
three different supervised machine-learning models of AF 
burden signatures were developed to predict the risk of stroke 
(random forest ,  CNN and L1 regularized logist ic 
regression)35. In the testing cohort, the random forest model 
had an AUC of 0.66, the CNN model had an AUC of 0.60 and 
the L1 regularized logistic regression model had an AUC of 
0.56. By contrast, the CHA DS –VASc score, the most widely 2 2

used stroke-prediction scheme in current practice36, had an 
AUC of 0.52 for stroke prediction. However, the highest AUC 
(0.63) was achieved when the CHA DS –VASc score was 2 2

combined with the random forest and CNN models35, 
indicating the prognostic strength of approaches that 
combine AI-enriched models with traditional clinical tools. 
The performance of this model is still quite modest. The 
integration of additional information from the clinical history, 
imaging tests and circulating biomarkers might further 
improve risk stratication but this task is beyond current AI 
capabilities. For example, in an unsupervised cluster analysis 
of approximately 10,000 patients with AF in the ORBIT-AF 
registry, including patient-specic clinical data, medications, 
and laboratory, ECG and imaging data, four clinically 
relevant phenotypes of AF were identied, each with distinct 
associations with clinical outcomes (low comorbidity, 
behavioural comorbidity, device implantation and 
atherosclerotic comorbidity clusters)37. However, although 
this nding offers a proof of concept, the clinical utility of these 
clusters has not yet been demonstrated. The hope is that 
phenotype-specic treatment strategies will lead to superior 
patient outcomes, but testing is required.

Detection of HCM
HCM is infrequent in the general population, with an 
estimated prevalence of 1 in 200 to 1 in 500 individuals38,39. 
However, HCM is one of the leading causes of sudden cardiac 
death among adolescents and young adults. HCM is also 
associated with substantial morbidity in all age groups40. 

In most cases, a diagnosis of HCM can be established with 
echocardiography combined with the clinical history, but the 
widespread use of echocardiography for the detection of HCM 
in otherwise asymptomatic individuals is impractical. 
Therefore, alternative modalities, such as the ECG, have been 
considered as a means for screening. More than 90% of 
p a t i e n t s  w i t h  H C M  h a v e  e l e c t r o c a r d i o g r a p h i c 
abnormalities41, but these abnormalities are non-specic 
and can be indistinguishable from LV hypertrophy. Generally, 
ECG screening has relied on manual or automated detection 
of particular features, such as LV hypertrophy, left axis 
deviation, prominent Q waves and T-wave inversions. 
However, these approaches have insufcient diagnostic 
performance to justify routine ECG screening42. Moreover, 
several sets of ECG criteria have been proposed to distinguish 
between HCM and athletic heart adaptation, but their 
diagnostic performance has been inconsistent when external 
validations have been attempted43,44. The nature of a deep-
learning AI approach might offer the advantage of an 
agnostic and unbiased approach to the ECG-based detection 
of HCM that does not rely on traditional criteria for LV 
hypertrophy.

With use of the ECGs of 2,500 patients with a validated 
diagnosis of HCM and >50,000 age-matched and sex-
matched control individuals without HCM, an AI–ECG CNN 
was trained and validated to diagnose HCM on the basis of 
the ECG alone45. In an independent testing cohort of 612 
patients with HCM and 12,788 control individuals, the AUC of 
the CNN was 0.96 (95% CI 0.95–0.96) with sensitivity of 87% 
and specicity of 90%. The performance of the model was 
robust in subgroups of patients meeting the ECG criteria for LV 
hypertrophy and among those with normal ECGs45. 
Importantly, performance was even better in younger patients 
(aged <40 years) but declined with increasing age. 
Furthermore, the performance of the model did not seem to be 
affected by the sarcomeric mutation status of the patient, 
given that the model-derived probabilities for a diagnosis of 
HCM were a median of 97% and 96% in patients with HCM 
who either had or did not have conrmed variants in 
sarcomere-encoding genes, respectively45. The algorithm 
developed had equally favourable performance when 
implemented on the basis of a single lead (rather than all 12 
leads of the ECG), meaning that this algorithm could be 
applied as a screening test on a large scale and across 
various resource settings. 

Another group of investigators used a large, 12-lead ECG 
dataset to train machine-learning models for the detection of 
HCM together with other elements of cardiac structure (LV 
mass, left atrial volume and early diastolic mitral annulus 
velocity) and disease (pulmonary arterial hypertension, 
cardiac amyloidosis and mitral valve prolapse)46.(Fig 2)

Fig. 2: The AI–ECG to detect HCM.

Use of an articial intelligence-enhanced electrocardiogram 
(AI–ECG) model to detect obstructive hypertrophic 
cardiomyopathy (HCM) in a woman aged 21 years before (part 
a) and after (part b) septal myectomy.

Detection of  hyperkalaemia
Numerous studies have shown that either hyperkalaemia or 
hypokalaemia is associated with increased mortality, and 
evidence suggests that the mortality associated with 
hyperkalaemia might be linked to underdosing of evidence-
based therapies47. Our group has evaluated the performance 
of an AI–ECG CNN for the detection of hyperkalaemia in 
patients with chronic kidney disease48,49. In the latest large-
scale evaluation, the model was trained to detect serum 
potassium levels of ≥5.5mmol/l using >1.5 million ECGs from 
nearly 450,000 patients who underwent contemporaneous 
assessment of serum potassium levels. This level of potassium 
was chosen because this threshold was thought to be 
clinically actionable. At this cut-off point, the model 
demonstrated 90% sensitivity and 89% sensitivity in a 
multicentre, external validation cohort49. 

Antiarrhythmic drug management
Dofetilide and sotalol are commonly used for the treatment of 
AF. Their antiarrhythmic effect is exerted on the myocardium 
by prolonging the duration of the repolarization phase, 
meaning that QT prolongation is an anticipated effect of these 
drugs. Owing to the ensuing risk of substantial QT 
prolongation and potentially fatal ventricular proarrhythmia, 
patients require close monitoring with a continuous ECG in 
the hospital setting when these drugs are used, particularly for 
dofetilide. In addition, with the long-term use of these 
medications, the QT interval should be intermittently 
assessed because dose adjustments might be necessary in 
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cases of substantial QT prolongation, concomitant 
medications with QT-prolonging effects and uctuations in 
renal function (both sotalol and dofetilide are primarily 
metabolized through the kidneys). Using serial 12-lead ECGs 
and linked information on plasma dofetilide concentrations in 
42 patients who were treated with dofetilide or placebo in a 
crossover randomized clinical trial, a deep-learning 
algorithm predicted plasma dofetilide concentrations with 
good correlation (r=0.85)50. By comparison, a linear model of 
the corrected QT interval correlated with dofetilide 
concentrations with a coefcient of 0.64 (ref.50). This nding 
suggests that the QT interval might not accurately reect the 
plasma dofetilide concentration in some patients and so 
might underestimate or overestimate the proarrhythmic risk. 
Machine-learning approaches, including supervised, 
unsupervised and reinforcement learning, have also been 
used to determine the optimal dosing regimen during 
dofetilide treatment51.

Wearable and mobile ECG technologies
AI algorithms can be applied to wearable technologies, 
enabling rapid, point-of-care diagnoses for patients and 
consumers. Although many algorithms have been derived 
using 12-lead ECG data, some studies have demonstrated 
favourable performance even when algorithms are deployed 
on single-lead ECGs8. The performance of AI–ECG 
algorithms for the detection of HCM or the determination of 
serum potassium levels when applied to single-lead ECGs 
has been shown not to be signicantly different from the 
performance when applied to 12-lead ECGs45,52. 

An international consortium is currently evaluating the ECG 
as a potential means to diagnose COVID-19, cardiac 
involvement or the risk of cardiac deterioration, given the 
known ECG changes and cardiac involvement in patients with 
COVID-19 (53,54). Although results are not yet available, 
these types of investigation emphasize the potential power of 
digitally delivered AI technologies for timely deployment at 
the point of care and large-scale implementation.

Implementation of AI–ECG
In contrast to data obtained through the clinical history, 
medical record review or imaging tests, the ease and 
consistency with which ECG data can be obtained and 
analysed for the development and implementation of AI 
models are likely to accelerate the uptake of the AI–ECG in 
clinical applications, with ensuing increases in workow 
efciency. The preliminary data on the performance of the 
AI–ECG algorithms are clearly promising, but these 
technologies will be meaningful only inasmuch as they 
improve our clinical practice and patient outcomes55. 

The algorithm to identify LV dysfunction using the ECG is 
currently being evaluated in a large-scale, pragmatic, cluster 
randomized clinical trial56. The EAGLE trial57 randomly 
assigned >100 clinical teams (or clusters) either to have 
access to the new AI screening tool results or to usual care at 
nearly 50 primary care practices (which will encompass >400 
clinicians and >24,000 patients) in the Mayo Clinic Health 
System. Eligible patients include adults who undergo ECG for 
any reason and in whom low LVEF has not been previously 
diagnosed. The primary outcome is the detection of low LVEF 
(<50%), as determined by standard echocardiography. The 
objective of this study is twofold: to evaluate the real-world 
efcacy of the algorithm in identifying patients with 
asymptomatic or previously unrecognized LV dysfunction in 
primary care practices and to understand how information 
derived from AI algorithms is interpreted and acted on by 
clinicians — how do humans and machines interact? This 
study will validate (or refute) the utility of this approach and 
will help us to understand potential barriers and opportunities 
for the implementation of AI in clinical practice. Regardless of 
its results, the EAGLE trial57 will be an important study 
because it will be the prototype study for the implementation of 

AI-enabled tools.

Similarly, we are developing a protocol to assess the 
algorithm to identify concomitant silent AF or the risk of near-
term AF using a 12-lead ECG obtained during normal sinus 
rhythm. The BEAGLE trial58 will seek to evaluate the utility of 
this AI algorithm for targeted AF screening in patients who 
would have at least a moderate risk of stroke if they had AF. 

Another application of this algorithm might be in guiding 
treatment decisions for patients with ESUS. We postulate that 
these patients might benet from intensied screening or even 
empirical anticoagulation on the basis of a high probability of 
AF, as indicated by the AI–ECG algorithm. Several studies 
have shown no benet of empirical anticoagulation in 
patients with ESUS27,28, but the AI–ECG might help to 
identify a subset of patients with ESUS in whom recurrent 
strokes can be prevented.

Fig. 3: Framework for AI–ECG applications in clinical 
practice.

Current, versatile electrocardiogram (ECG)-recording 
technologies (wearable and implantable devices, 
smartwatches and e-stethoscopes) coupled with the ability to 
store, transfer, process and analyse large amounts of digital 
data are increasingly allowing the deployment of articial 
intelligence (AI)-powered tools in the clinical arena, 
addressing the spectrum of patient needs. The science of AI-
enhanced ECG (AI–ECG) implementation, including the 
interface between patients and the AI–ECG output, integration 
of AI–ECG tools with electronic health records, patient privacy, 
and cost and reimbursement implications, is in its infancy and 
continues to evolve.

Potential challenges and solutions
The AI–ECG technologies offer great promise, but it is 
important to acknowledge several potential challenges. 
Given that models are often derived from high-quality 
databases with meticulously obtained ECGs and well-
phenotyped patients, their application to ECGs obtained in 
routine clinical practice in real-world settings might be poor. 
Similarly, although the models might perform well in one 
population, they require rigorous evaluation for external 
validity in diverse populations. The afore mentioned AI–ECG 
model for low LVEF has been validated in racially diverse 
cohorts, but validation data for the other AI–ECG model 
algorithms are pending. Although models might perform well 
in terms of their individual performance characteristics, this 
performance does not always translate into meaningful and 
actionable clinical information. For instance, screening tests 
for very rare conditions might be limited by low positive 
predictive value when applied to populations with low pretest 
probability of the disease. Although an algorithm might seem 
to predict a disease state well, if this information does not add 
to other readily available data (such as age, sex and co 
morbidities), the algorithm will add very little to clinical risk 
stratication. Many routinely used screening and diagnostic 
tests often do not produce consistent improvements in 
downstream patient outcomes, thereby offering little 
incremental value to clinical care61. Similar assessments of 
the effects of routinely integrating the AI–ECG into clinical 
practice and its implications for patient outcomes and costs 
will be important. Clearly, the delivery of AI-related 
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applications in the clinical environment generates a new set of 
previously unrecognized challenges.

As with most other AI-enabled tools, the development of 
AI–ECG models requires large datasets for training, 
validation and testing. In some cases, multicentre 
collaborations might be necessary to assemble the sample 
sizes required for the development of high-delity models. 
Such collaboration is particularly pertinent when the 
condition of interest is rare or when an urgent clinical need 
dictates the rapid development of a model, such as the 
AI–ECG tools for the diagnosis and risk stratication of 
COVID-19 during the current pandemic. In this process and 
during external validation of any AI–ECG model, large 
amounts of patient data are exchanged between research 
teams worldwide, generating concerns for the security and 
protection of sensitive patient information that might be 
susceptible to cyberattacks or other threats62. In the current 
environment, the use of traditional encryption methods might 
not be sufcient to alleviate these concerns. Among other 
possible novel data-protection solutions, blockchain 
technology might allow the secure and traceable sharing of 
patient data between investigators and institutions for the 
development, validation and clinical implementation of AI 
tools by generating a decentralized marketplace of securely 
stored patient data specically intended to be used in AI 
applications63,64. Of note, even a miniscule articial 
perturbation of the input data (such as a single pixel in an 
image or an ECG) that is unrecognizable by the human eye 
might lead an otherwise well-trained CNN to misclassify the 
data and generate false output. CNNs are clearly vulnerable 
to adversarial perturbations of input data, and shielding 
against these vulnerabilities will be important for their future 
widespread implementation65.

Fig. 4: AI–ECG Dashboard linked from within the electronic 
health record for point-of-care application.

CONCLUSIONS
Cardiac amyloidosis results in electrocardiographic changes 
that may develop well ahead of clinical diagnosis and are 
detected by the application of AI to the standard ECG, a 

ubiquitous and inexpensive test. The implementation of the 
AI–ECG is still in its infancy, but a continuously growing 
clinical investigation agenda will determine the added value 
of these AI tools, their optimal deployment in the clinical arena 
and their multifaceted and so-far largely unpredictable 
implications. Despite increased awareness and improved 
imaging techniques, delays in diagnosis of CA continue to 
lead to tragic outcomes. The use of this AI-ECG model to 
detect CA may promote early diagnosis and initiation of 
potentially lifesaving therapy.
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