VOLUME - 11, ISSUE - 06, JUNE - 2022 • PRINT ISSN No. 2277 - 8160 • DOI : 10.36106/gjra Original Research Paper Cardiology A CROSS-SECTIONAL STUDY OF THE ASSOCIATION BETWEEN HOMOCYSTEINE AND LIPID PROFILES, 5-YEAR STUDY IN AN INDIAN **REFERENCE LABORATORY** Dr Moumita Misra Pathologist, Metropolis Healthcare Limited, Mumbai, Maharashtra Pathologist, Metropolis Healthcare Limited, Mumbai, Maharashtra, Dr Shailesh Desai* *Corresponding Author Raj Jatale Biostatistician, Metropolis Healthcare Limited, Mumbai, Maharashtra Chief Scientific Officer, Metropolis Healthcare Limited, Mumbai, Dr Kirti Chadha Maharashtra

ABSTRACT AIMS AND OBJECTIVES: The study investigated the correlation between homocysteine and lipid profiles in Indian urban based population in reference laboratory. METHOD: The participants were composed of 540339 Indian people aged 18 - 92 years old, who were recruited from urban population of Mumbai in India over 5years retrospectively. Non-parametric test and logistic regression were used to examine the distribution of homocysteine and lipid profiles (triglyceride [TG], total cholesterol [TC], low-density lipoprotein cholesterol [LDLC], high-density lipoprotein cholesterol [HDL-C]) and the relationship between them. RESULTS: The median age of subjects at risk was 40 years old or more, and 55.67% were male with female being 44.33%. In multivariate logistic regression analyses, high homocysteine was associated with increasing risk of low HDL-C (HDL-C < 40mg/dl; adjusted odds ratio [OR] = 1.1293, 95% confidence interval $[CI]: 1.0923- 1.1675, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.33, 95\% CI: 1.0607- 1.6676, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.33, 95\% CI: 1.0607- 1.6676, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.33, 95\% CI: 1.0607- 1.6676, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.33, 95\% CI: 1.0607- 1.6676, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.33, 95\% CI: 1.0607- 1.6676, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.33, 95\% CI: 1.0607- 1.6676, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.33, 95\% CI: 1.0607- 1.6676, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.33, 95\% CI: 1.0607- 1.6676, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.33, 95\% CI: 1.0607- 1.6676, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.33, 95\% CI: 1.0607- 1.6676, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.33, 95\% CI: 1.0607- 1.6676, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.33, 95\% CI: 1.0607- 1.6676, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.33, 95\% CI: 1.0607- 1.6676, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.33, 95\% CI: 1.0607- 1.6676, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.33, 95\% CI: 1.0607- 1.6676, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.33, 95\% CI: 1.0607- 1.6676, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.33, 95\% CI: 1.0607- 1.6676, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.33, 95\% CI: 1.0607- 1.6676, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.33, 95\% CI: 1.0607- 1.6676, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.0000, P < 0.0001), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.0000, P < 0.0000), hypertriglyceridemia (TG \ge 500 mg/dl; adjusted OR = 1.0000$ high CHOL/HDL (CHOL/HDL ≥ 5; αdjusted OR = 1.2235, 95% CI: 1.1752–1.2737, P < 0.0001), high LDL/HDL (LDL/HDL ≥ 3.5; adjusted OR = 1.2378, 95% CI: 1.1737–1.3055, P < 0.0001), high LDL-C (LDL-C >150mg/dl; adjusted odds ratio [OR] = 1.8763, 95% confidence interval [CI]: 1.744 - 2.0321, P < 0.0001) and high non HDL-C (non HDL-C > 160mg/dl; adjusted odds ratio [OR] =1.09, 95% confidence interval [CI]: 1.0113 - 1.1714, P < 0.0001) after adjusting the confounders. However, there were no significant associations between homocysteine and ApoAl, Lipoprotein (a). The regression analysis results would provide a basis for the treatment and prevention of abnormal lipid metabolism among Indian population. CONCLUSION: The present study showed that hyperhomocysteine was independently associated with high LDL-Cholesterol, hypertriglyceridemia and low levels of HDL-C. Our results also suggest that the homocysteine levels might involved in HDL-C and TG metabolism.

KEYWORDS : High-density lipoprotein (HDL-C), Homocysteine (Hcy), Low-density lipoprotein cholesterol (LDL-C), Total cholesterol (TC), Triglyceride (TG).

INTRODUCTION:

Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular disease (CVD) through various mechanisms which includes endothelium damage, stimulation of smooth muscle cell proliferation, enhanced peroxidation of low-density lipoprotein cholesterol (LDL-C) and activation of thrombosis as per Antoniades C et al [26]. As per Geoff H. Werstuck et al [5]; homocysteine-induced endoplasmic reticulum (ER) stress activates both the unfolded protein response and the sterol regulatory element-binding proteins (SREBPs) in cultured human hepatocytes as well as vascular endothelial and aortic smooth muscle cells. Activation of the SREBPs is associated with increased expression of genes responsible for cholesterol/triglyceride biosynthesis and uptake and with intracellular accumulation of cholesterol. This explained the development and progression of atherosclerotic lesions observed in hyperhomocysteinemia.

This study aims to investigate the association of plasma homocysteine level with lipid profiles in Indian community based population without lipid-lowering treatment.

STUDY DESIGN:

This retrospective study was conducted on 540339 lipid profile test results obtained over a period of 5 years, from 2017-2021 in a referral laboratory based in the metropolitan city of Mumbai, India.

The population studied belonged to the city of Mumbai (Urban population).

Investigations:

1. Homocysteine

2. Apolipoprotein profile including Apolipoprotein SAH is a

Al, Apolipoprotein B, Apolipoprotein B/Al ratio

3. Lipoprotein(a)

4. Lipid profile including Triglycerides level, HDL Cholesterol, Non HDL Cholesterol, VLDL Cholesterol, LDL Cholesterol, Cholesterol-Total, LDL/HDL ratio, CHOL/HDL ratio.

We studied the incidence and prevalence of lipid profiles and homocysteine in different age groups and gender.

We also studied the correlation between lipid profiles with plasma homocysteine for the diagnostic sensitivity of each in view of cardiovascular risk.

METHODS:

After an overnight fast of at least 12 h, a venous blood sample was obtained from the forearm of each individual. Plasma samples were separated within 30 min of collection and were stored in refrigerator.

Analysis of plasma homocysteine:

For this study, all reports results were obtained on usage of Roche analyser.

Principle of Roche analyzer for plasma homocysteine evaluation:

Homocysteine (Hcy) enzymatic assay is based on a novel enzyme cycling assay principle that assesses the co-substrate conversion product instead of assessing co-substrate or Hcy conversion products of Hcy. In this assay, oxidized Hcy is first reduced to free Hcy which then reacts with a co-substrate, S-adenosylmethionine (SAM), to form methionine (Met) and S-adenosylhomocysteine (SAH), catalysed by Hcy S-methyltransferase.

SAH is assessed by coupled enzyme reactions where SAH is

hydrolysed into adenosine (Ado) and Hcy by SAH hydrolase, and Hcy is cycled into the Hcy conversion reaction to form a reaction cycle that amplifies the detection signal. The formed Ado is immediately hydrolyzed into inosine and ammonia. In the last step, the enzyme glutamate dehydrogenase (GLDH) catalyzes the reaction of ammonia with 2-oxoglutarate and NADH to form NAD+. The concentration of Hcy in the sample is directly proportional to the amount of NADH converted to NAD+ (A340 nm).

Reference Range of plasma

homocysteine: 5.46 to 16.2micromol/L

Analysis of lipid profile:

Analysis of reports of lipid profile which includes triglycerides, total cholesterol, HDL cholesterol was done using enzymatic colorimetric test method on Roche analyzer.VLDL cholesterol, CHOL/HDL ratio, LDL/HDL ratio, LDL Cholesterol, serum Non HDL Cholesterol are calculated parameters.

Reference ranges for lipid profile were defined as per The National Cholesterol Education Programmer (NCEP) Adult Treatment Panel III Reporting guidelines:

Parameters	Interpretation (in mg/dl)
LDL Cholesterol	Optimal: < 100
	Near Optimal / Above Optimal: 100-129
	Borderline High: 130-159
	High: 160-189
	Very High: $>= 189$
Triglycerides level	Normal: < 150
	Borderline High: 150-199
	High: 200-499
	Very High: $>= 500$
Cholesterol-Total	Desirable - Upto 200
	Borderline high - 200-240
	High - Above 240
HDL Cholesterol	Major risk factor for heart disease: < 40
	Negative risk factor for heart disease:
	>= 60
Non HDL	Optimal: < 130
Cholesterol	Desirable: 130-159
	Borderline high: 159-189
	High: 189-220
	Very High: >= 220
LDL Cholesterol	Optimal: < 100
	Near Optimal: 100-129
	Borderline high: 130-159
	High: 160-189
	Very High: >= 190
VLDL Cholesterol	6-38
LDL/HDL RATIO	2.5-3.5
CHOL/HDL RATIO	3.5-5

Analysis of Serum Apolipoprotein profile:

Serum Apolipoprotein profile includes Apolipoprotein A1, Apolipoprotein B and Apolipoprotein B/A1 Ratio was done using Immunoturbidimetry method on Roche module analyzer.

Reference Range of Serum Apolipoprotein profile:

Apolipoproteins A1: 104-202 mg/dl Apolipoproteins B: 66-133 mg/dl Apolipoproteins B/A1 Ratio: 0.35-1.0 mg/dl

Analysis of Serum Lipoprotein (a):

Serum Lipoprotein test was done using particle enhanced immunoturbidimetry method on Roche module analyzer.

Reference Range of Lipoprotein (a):

0-30mg/dl

Statistical Analysis Methods:

Data was analysed using "R Software Version 3.5.2". Result of Quantitative variable are expressed as Mean + SD, Median (Interquartile Range {IQR}) and Range. Result of Qualitative variable are expressed as Frequency and Percentage. Shapiro-Wilks Test was used to determine whether data sets differed from a normal distribution. For categorized variables chi square test or Fisher's exact test is been used. To determine the independent effects of variables associated with the abnormal Homocysteine a multiple binary logistic regression analysis was then performed including variables with a P value of < 0.1 from univariate analysis. Result was considered significant at p value < 0.05.

RESULT:

Total 540339 cases were included in the study over period of 5 years. Out of 540339 cases, 239543 were females (44.33%) and 300796 were males (55.67%). Maximum patients belonged to age group of above 41 and majority of them above 60 years of age. (Table No. 1)

Table No.1:

	Frequency	Percentage					
Gender							
Female	239543	44.33					
Male	300796	55.67					
Age Group							
18–30	47963	8.88					
31–40	98799	18.28					
41–50	117363	21.72					
51–60	117028	21.66					
>60	159186	29.46					

From among all the cases, 41.83% had abnormal homocysteine. Apolipoproteins A1, Apolipoproteins B and Apolipoproteins B/A1 were observed to be abnormal in 10.57%, 24.27% and 2.05% cases respectively.

In lipid profiles (Table No.2), total cholesterol were seen high in 22.49% cases and low in 69.40%.

Total Cholesterol was high in 8.11% and borderline high in 22.49%. HDL Cholesterol was major risk factor for heart disease in 32.74% cases and it was negative risk for heart disease in 11.44% cases. CHOL/HDL ratio was high in 22.09% cases and was low in 34.89% cases.

LDL Cholesterol was optimal and near optimal in 46.27% and 28.74% cases respectively and it was abnormal in 24.98% cases i.e.(Borderline high: 17.55%, High: 5.76% and Very high: 1.67%)

LDL/HDL ratio was high in 13% cases and was low in 58.09% cases. Non HDL Cholesterol level was optimal in 48.25% cases, desirable in 25.93% cases, borderline high in 16.28% cases, high in 6.63% and very high in 2.91%,

Triglyceride level was normal in 64.34% cases, borderline high in 18.66% cases, high in 16.07% cases and was very high in 0.94% cases. VLDL Cholesterol was high in 15.49% cases and normal in 84.51% cases.

Lipoprotein (a) was abnormal in 37.34% and was normal in 62.66% cases.

Table No.2:

	Frequency	Percentage					
Homocysteine							
High	68570	40.18					
Low	2823	1.65					
Normal	99271	58.17					
ApolipoproteinsAl							
High	834	1.05					

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS № 57

VOLUME - 11, ISSUE -	06, JUNE - 2022 • PRINT I	SSN No. 2277 - 8160 • DOI			
Low	7531	9.52			
Normal	70717	89.42			
Apolipoproteins B					
High	7267	9.19			
Low	11929	15.08			
Normal	59886	75.73			
Apolipoproteins B/	Al				
High	11424	1.71			
Low	2244	0.34			
Normal	655414	97.96			
Cholesterol Total					
Bordline High	89430	22.48			
Normal	276014	69.4			
Low	32246	8 11%			
HDI Cholesterol	02210	0.1170			
Major Bick	130204	22.74			
Bordorlino risk	222005	55.82			
Noggtivo Biak	45400	11 44			
CUOI /UDI Partia	40400	11.44			
	07000	22.00			
nign Levr	0/000	24.09			
LOW	130714	34.03 42.02			
Normal	171042	43.02			
	195591	40.07			
Optimal	175571	46.27			
Near optimal	109060	28.74			
Borderline High	66588	17.55			
High	21869	5.76			
Very High	6332	1.67			
LDL/HDL Ratio					
High	49322	13			
Low	220371	58.09			
Normal	109700	28.91			
Lipoprotein(a)	1				
Abnormal	29526	37.34			
Normal	49553	62.66			
Non HDL Choleste	rol				
Optimal	191977	48.25			
Desirable	103157	25.93			
Borderline High	64785	16.28			
High	26376	6.63			
Very High	11573	2.91			
Triglycerides Level					
Normal	256027	64.34			
Borderline High	74240	18.66			
High	63955	16.07			
Very High	3726	0.94			
VLDL Cholesterol					
Normal	320576	84.51			
High	58778	15.49			

Based on gender differentiation, correlation of various parameters and risk factors for cardiovascular risk was found to be significant statistically with p value < 0.05. Males were more significantly at risk with higher levels of homocysteine (46.75%), Total Cholesterol (71.80%), Apo B/Apo A (18.19%), Chol/HDL (27.94%), HDL Cholesterol (43.98%), Non- HDL Cholesterol (26.42%), Triglyceride (39.59%), LDL/HDL Cholesterol (16.57%) and VLDL (17.64%) as compared to females. On contrary, had higher levels of ApoA1 (1.87%), Apo B (9.4%), LDL Cholesterol (25.86%), Lipoprotein A (40.88%) was found to be significantly higher in females. (Table No. 3)

Table No.3

	Gender							
	Female		P Value					
	Frequency	Percentage	Frequency	Percentage				
Homocysteine								
High	10272	22.35	58298	46.75	< 0.000			
Low	2100	4.57	723	0.58	1			

33597 73.09 65674 52.67 Normal Apolipoproteins Al 1.87 130 0.31 < 0.0001 High 704 5677 13.73 Low 1854 4.91 Normal 35173 93.22 35544 85.96 Apolipoproteins B 9.4 3719 8.99 < 0.0001 High 3548 Low 5150 13.65 6779 16.39 Normal 29033 76.95 30853 74.61 Apolipoproteins B/Apolipoproteins Al ratio High 3902 10.34 7522 18.19 < 0.0001 Low 1388 3.68 856 2.07 32973 32441 85.98 79.74 Normal Cholesterol Total < 0.0001 Desirable 127482 66.8 148532 71.8 24.11Borderline high 46016 43414 20.99 High 9.08 14910 7.21 17336 HDL Cholesterol < 0.0001 Major Risk 39226 20.55 90978 43.98 Borderline Risk 104876 117129 61.38 50.7 Negative Risk 18.07 11013 5.32 34486 Chol/HDL ratio 30022 15.74 57784 27.94 < 0.0001 Hiah Low 78666 41.23 60048 29.04 Normal 82088 43.03 88954 43.02 LDL Cholesterol 80964 43.83 94607 48.59 < 0.0001 Optimal 30.31 53073 Near optimal 55987 27.26 Borderline High 33391 18.08 33197 17.05 High 10988 5.95 10881 5.59 Very High 3373 1.83 2959 1.52 LDL/HDL Ratio High 17067 9.24 32255 16.57 < 0.0001 Low 118197 64 102174 52.48 Normal 49424 26.76 60276 30.96 Lipoprotein(a) < 0.0001 15424 40.88 14102 34.1 Abnormal Normal 22305 59.12 27248 65.9 Non HDL Cholesterol 91683 100294 48.46 0.00001 Optimal 48.03 Desirable 51159 26.8 51998 25.12 Borderline High 30397 15.92 34388 16.61 High 12082 6.33 14294 6.91 Very High 5564 2.91 6009 2.9 Triglycerides Level < 0.0001 Normal 130956 68.6 125071 60.41 Borderline High 33550 17.57 40690 19.65 High 25328 13.27 38627 18.66 Very High 1076 0.56 2650 1.28 VLDL Cholesterol High 24430 13.23 34348 17.64 < 0.0001 Normal 160217 86.77 160359 82.36

As per Table no.4 high triglyceride, non-HDL cholesterol, LDL cholesterol, was significantly associated with elderly age group. High homocysteine also significant association with age, although was not specific to any age group. Table No.4

TableNo.4

: 10.36106/gjra

	Age Group										
	18-30		31-40		41-50		51-60		>60		Р
	N	%	n	%	N	%	n	%	n	%	value
Homocysteine											
Uiah	755	40.2	142	41.9	153	40.3	131	38.7	183	39.7	< 0.0
mgn	6	4	59	3	08	4	80	3	39	9	001
Low	698	3.72	843	2.48	524	1.38	382	1.13	376	0.82	
Norm	105	56.0	189	55.5	221	58.2	203	60.1	273	59.3	
al	25	5	03	9	17	8	52	4	74	9	

58 ★ GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS

Apoli	popr	otein	s Al								
High	33	0.7	97	0.79	119	0.74	153	0.86	432	1.55	< 0.0
Low	701	14.8	156 8	12.6 9	157 7	9.75	144	8.09	223 9	8.01	001
Norm	397	7 84.4	106	3 86.5	144	89.5	162	91.0	252	90.4	
al	9	3	89	2	84	2	78	6	87	5	
Apoli	popr	otein	s B								
High	316	6.7	144 1	11.6 6	183 2	11.3 2	181 7	10.1 6	186 1	6.66	<0.0 001
Low	516	10.9	100	8.1	149 9	9.26	240 4	13.4	650 9	23.2 8	
Norm	388	82.3	991	80.2	128	79.4	136	76.3	195	70.0	
Apoli		otein	≤ s B/Ā	nolir		teins	AIR	atio	00	0	
	Joph	17.0	276	22.3	302	18.6	248	13.8	235		< 0.0
High	804	6	6	9	3	8	0	7	1	8.41	001
Low	59	1.25	110	0.89	190	1.17	428	2.39	7	5.21	
Norm al	385 0	81.6 9	947 8	76.7 2	129 67	80.1 4	149 69	83.7 3	241 59	86.3 8	
Chole	ster	ol Tot	αl	1	1					1	
Desir able	236 29	77.5 7	461 11	66.0 7	547 80	63.4 5	583 11	65.7 5	931 83	76.1 2	<0.0 001
Bord	544	17.8	176	25.3	222	27.0	216	24.4	213		
erlin High	2	7	73	20.0	46	4	65	3	04	17.4	
High	139 0	4.56	600 9	8.61	820 9	9.51	870 6	9.82	793 2	6.48	
HDL (Chole	ester	ol		-	I		I		I	
Μαjo	964	31.6	264	37.8	305	35.4	279	31.5	355	29.0	< 0.0
r Risk	7	7	09	4	83	2	69	4	96	2	001
Bord	173	56.9	376		479	55.5	504	56.8	688	56.1	
erlie Risk	50	5	13	53.9	47	3	32	6	83	6	
Nega	346	11.3	576	8.26	780	9.04	102	11.6	181	14.8	
tive Diale	/	8	/		9		87		69	1	
Chol/	HDI.	Batia									
High	588	19.3	208	29.9	239	27.7	196	22.1	174	14.2	< 0.0
-	3 117	2 38.4	90 171	5 24.6	22	22	29 289	4 32.6	82 585	8	001
Low	10	5	99	6	93	3	52	6	60	5	
Norm	128	42.2	316	45.4	400	46.4	400	45.2	463	37.8	
	59	3	109		88	5	77		49	7	
	nole	stero	0.02	26.1	200	07.1	070	120	707	EQ 4	<0.0
mal	23	47.2 1	63	2	89	37.1 7	47	43.9 6	49	59.4 5	001
Near	0.70		0.01	05.4	004		0.05	07.0	0.01	01.0	
Opti mal	979	33.2 2	231 43	35.4 7	264 27	32.6 5	235 60	27.8	261 31	21.9 6	
Bord	433	14.7	133	20.4	171	21.1	165	19.4	153	12.8	
erlie	9	1	07		03	3	02	8	37	9	
High											
High	107 2	3.63	406 9	6.24	583 7	7.21	573 4	6.77	515 7	4.33	
Very High	360	1.22	115 9	1.78	149 5	1.85	168 7	1.99	163 1	1.37	
ייינין דעד	י וחו	Ratio			I	I		I		I	1
High	361	12.2	115	17.7	131	16.2	111	13.2	983	8.27	< 0.0
Low	o 175	ь 59.3	95 307	47.1	399	49.3	481	56.9	7 840	70.6	1001
Norr	05	6	61	5	28	3	03	1	74	6	
al	030 9	28.3 8	228 84	33.U 8	279 03	34.4 7	252 65	29.8 9	230 79	8	
Lipon	rotei	n(α)		-				- -		-	
Abno	144	20.0	411	20.0	594	36.7	690	38.6	111	39.7	< 0.0
rmal	2	30.6	3	33.3	4	4	3	1	24	9	001
Norm	327	69.4	824	66.7	102	63.2 C	109	61.3	168	60.2	
al	11	i	IU -	i	35	b	1/4	1.51	33	11	1

VOL	UME - 1	1, ISS	SUE - 06	, JUN	E - 202	22 • P	RINT I	SSN 1	√o. 22	77 - 81	l 60 • 1	DOI :	10.361	06/gjra
			Non H	IDL (Chole	estero	ol							
1.55	< 0.0		Opti	166	54.6	271	38.8	336	38.9	398	44.9	746	60.9	< 0.0
0.01	001		mal	62	7	52	8	29	3	99	7	35	5	001
8.01			Desir	801	26.3	214	30.7	253	29.3	234	26.3	249	20.3	
90.4			able	4	20.0	84	7	34	3	01	8	24	5	
5			Bord	394	12.9	133	19.1	171	19.9	157	17.7	145	11.8	
			erine	0	3	50	2	99	1	50	5	46	8	
6.66	<0.0 001		High											
23.2			High	127 6	4.19	545 7	7.81	724 1	8.38	669 7	7.55	570 5	4.66	
8			Very	583	1.91	238	3.42	298	3.45	297	3.35	264	2.16	
/U.U			High			7		1		5		7		
0			Triglycerides Level											
	< 0.0		Norm	231	75 Q	423	60.6	514	59.5	550	62.0	840	68.6	< 0.0
8.41	001		αl	34	75.5	93	9	25	2	44	3	31	1	001
5 21			Bord	386	12.6	128	18.4	172	20.0	179	20.2	222	18.1	
			High	8	9	70	2	90	1	99	8	13	4	
86.3			Tilgii		10.5	104	10.0	104	10.0	1.40	10.0	158	10.0	
8			High	326	10.7	134	19.3	164	19.0	149	16.8	157	12.8	
70.1	-0.0		17	3 015	1	84 110	1 50	/8	/	00	0 00	400	/	
/b.1 2	< 0.0		Very High	212	0.71	7	1.58	121	1.4	/31	0.84	404	0.38	
4	001		Ingii VI DI	Cho	locto	/ rol		1						
174			Norm	265		534	81 9	663	81.9	707	83.4	103	87 N	< 0.0
17.7			al	01	5	71	7	58	8	11	6	535	1	001
6 4 8			~	296	10.0	117	, 18.0	145	18.0	140	16.5	154	12.9	
			High	2	5	64	3	83	2	13	4	56	9	

Association of homocysteine with other parameters in the table no.5 was statistically significant for Apo B, Apo B/A1, Total cholesterol, LDL Cholesterol, Chol/HDL ratio, LDL/HDL ratio, non-HDL cholesterol, Triglycerides level, VLDL Cholesterol, HDL Cholesterol and association of homocysteine with ApoAl, Lipoprotein (a) was statistically insignificant. (Table No. 5)

Table No.5

	Homo	cystei	ne				
	High		Low		Normal		P value
	n	%	Ν	%	N	%	
Apolipopro	teinsAl						
High	7	1.1	1	3.45	26	1.47	0.2195
Low	73	11.46	2	6.9	153	8.67	
Normal	557	87.44	26	89.66	1586	89.86]
Apolipopro	teins B						
High	70	10.99	1	3.45	126	7.14	0.0018
Low	74	11.62	5	17.24	293	16.6	
Normal	493	77.39	23	79.31	1346	76.26]
Apolipopro	teins B,	/ Apol	ipopr	oteins	A1		
High	111	17.43	0	0	208	11.78	0.0007
Low	12	1.88	1	3.45	54	3.06	
Normal	514	80.69	28	96.55	1503	85.16	
Cholesterol	l Total						
Desirable	13252	70.54	214	78.97	20174	72.39	< 0.0001
Borderline	4170	00.05	10	15 07	E770	20 72	
High	4179	44.43	43	13.07	3776	20.73	
High	1355	7.21	14	5.17	1918	6.88	
HDL Choles	sterol						
Major Risk	6991	37.21	96	35.42	8667	31.1	< 0.0001
Borderline Risk	10356	55.11	142	52.4	16294	58.47	
Negative Risk	1443	7.68	33	12.18	2907	10.43	
Chol/HDL F	latio						
High	4774	25.41	44	16.24	5373	19.28	< 0.0001
Low	5655	30.1	116	42.8	10937	39.25	1
Normal	8357	44.49	111	40.96	11554	41.47	1
LDL Choles	sterol	1	1				
Optimal	8094	44.94	137	53.1	13505	50.3	< 0.0001

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS * 59

VOLUME - 11, ISSUE - 06, JUNE - 2022 • PRINT ISSN No. 2277 - 8160 • DOI : 10.36106/gjra

Near	5346	29.68	85	32.95	7331	27.31					
Optimal											
Borderline	3307	18.36	30	11.63	4270	15.9					
High											
High	1032	5.73	5	1.94	1368	5.1					
Very High	233	1.29	1	0.39	374	1.39					
LDL/HDL R	LDL/HDL Ratio										
High	2692	14.95	19	7.36	2954	11	< 0.0001				
Low	9447	52.45	173	67.05	16655	62.03					
Normal	5871	32.6	66	25.58	7239	26.96					
Lipoprotein	(α)	•		•		•					
Abnormal	230	36.11	11	37.93	684	38.75	0.4988				
Normal	407	63.89	18	62.07	1081	61.25					
Non HDL C	holeste	erol									
Optimal	8791	46.78	148	54.61	14688	52.69	< 0.0001				
Desirable	5049	26.86	81	29.89	6735	24.16					
Borderline	3214	17.1	28	10.33	4149	14.88					
High											
High	1279	6.81	10	3.69	1664	5.97					
Very High	461	2.45	4	1.48	641	2.3					
Triglyceride	es level										
Normal	11831	62.96	177	65.31	18253	65.47	< 0.0001				
Borderline	2720	10.0	11	16.04	E200	10.07					
High	3739	19.9	44	10.24	5290	10.97					
High	3075	16.37	48	17.71	4182	15					
Very High	145	0.77	2	0.74	154	0.55					
VLDL Chole	esterol										
Normal	15081	83.72	211	82.42	22875	85.24	< 0.0001				
High	2932	16.28	45	17.58	3962	14.76					

Correlation of homocysteine with other parameters in the table below was statistically significant. Homocysteine showed positive correlation with Apo B, Apo B/A1, Total cholesterol, LDL Cholesterol, Chol/HDL ratio, LDL/HDL ratio, non-HDL cholesterol, Triglycerides level, VLDL Cholesterol. Homocysteine showed negative correlation with ApoA1, HDL Cholesterol, Lipoprotein (a). (Table No. 6)

Table No.6

Variablea	-	Correlatio	95% CI of	Р
valiables	11	coefficient (r)	r	value
Apolipoprotoing Al	2421	0 1 1 97	-0.1578 to	< 0.0
Apolipoproteills A1	2431	-0.1187	-0.0793	001
Apolipoproteins B	2431	0.1001	0.06055 to	< 0.0
			0.1393	001
Apolipoproteins B/A1	2431	0.1574	0.1184 to	< 0.0
			0.1959	001
Cholesterol Total	46927	0.0473	0.0382 to	< 0.0
			0.0563	001
HDL Cholesterol	46929	-0.1027	-0.1116 to	< 0.0
			-0.09370	001
Chol/HDL Ratio	46921	0.1142	0.1052 to	< 0.0
			0.1231	001
LDL Cholesterol	45118	0.07361	0.06443 to	< 0.0
			0.08278	001
LDL/HDL Ratio	45116	0.1353	0.1263 to	< 0.0
			0.1444	001
Lipoprotein(a)	2431	-0.05563	-0.09518 to	0.006
			-0.01591	2
Non HDL Cholesterol	46942	0.07507	0.06607 to	< 0.0
			0.08406	001
Triglycerides level	46940	0.03199	0.02295 to	< 0.0
			0.04103	001
VLDL Cholesterol	45106	0.03324	0.02402 to	< 0.0
			0.04246	001

Association of lipoprotein(a) with other parameters in the table no.7 was statistically significant for Apo B, Apo B/A1, Total cholesterol, LDL Cholesterol, Chol/HDL ratio, non-HDL cholesterol, Triglycerides level, VLDL Cholesterol, HDL Cholesterol, and association of lipoprotein(a) with LDL/HDL

ratio was statistically insignificant. (Table No. 7)

Table No.7

	T • •				
	Lipoprote	_			
	Abnormo	ıl	Normal		Р
	Frequen	Percenta	Frequen	Percenta	Value
	су	ge	су	ge	
Apolipoprot	eins Al				
High	359	1.22	475	0.96	< 0.0001
Low	2302	7.8	5229	10.55	
Normal	26864	90.99	43849	88.49	
Apolipoprot	eins B				
Hiah	3123	10.58	4143	8.36	< 0.0001
Low	3878	13.13	8051	16.25	
Normal	22524	76.29	37359	75.39	
Apolipoprot	eins B/ Ar	olipoprote	ns Al ra	tio	
High	4270	14 46	7153	14 44	< 0 0001
Low	661	2 24	1583	3 19	
Normal	2/59/	2.27 22.2	1000	82 37	
Cholostorol	Total	00.0	40017	02.07	
Desirable	15420	67 5	07670	71 57	<0.0001
Desilable	13439	67.5	2/0/0	/1.5/	< 0.0001
Borderline	5116	22.37	8093	20.93	
Lich	0017	10.10	2001	75	
Hign	2317	10.13	2901	7.5	
HDL Choles	sterol	00.01	14000	00.00	.0.0007
Major Risk	7054	30.84	14838	38.38	< 0.0001
Borderline	13028	56.96	20164	52.15	
Risk					
Negative	2791	12.2	3662	9.47	
Risk					
Chol/HDL R	atio				
High	4892	21.39	9302	24.06	< 0.0001
Low	8456	36.97	13286	34.37	
Normal	9522	41.64	16069	41.57	
LDL Choles	terol				
Optimal	10339	46.52	18561	50.56	< 0.0001
Near	FF00	05.14	0070	00.00	
optimal	2288	25.14	9070	20.30	
Borderline	4052	18.23	5927	16.14	
High					
High	1636	7.36	1945	5.3	
Very High	611	2.75	603	1.64	
LDL/HDL Ro	ntio				
High	3274	14.73	5153	14.04	0.0059
Low	12942	58.23	21255	57.9	
Normal	6008	27.03	10303	28.07	
Non HDL C	holesterol				
Optimal	11316	49 46	19562	50.56	< 0 0001
Dogirable	5268	23.02	9529	24.63	<0.0001
Bordorlino	2671	16.04	5050	15 20	
High	3071	10.04	3330	15.56	
Lich	1727	7 50	2507	6 10	
Marana III: arla	000	7.00	1140	0.40	
	003	3.03	1144	4.30	
inglycende	s Level	00.45	00777	a. a=	
Normal	15658	68.42	23713	61.27	< 0.0001
Borderline	4189	18.3	7731	19.98	
High	100	10.0	,,,,,,	10.00	
High	2952	12.9	6859	17.72	
Very High	86	0.38	398	1.03	
VLDL Chole	sterol				
Normal	19334	86.99	30415	82.87	< 0.0001
High	2891	13.01	6286	17.13	
					·

Correlation of lipoprotein (a) with other parameters in the Table No.8 below was statistically significant except Apolipoprotein B/A1. Lipoprotein (a) showed positive correlation with ApoA1, Apo B, Apo B /A1, Total cholesterol, HDL Cholesterol, LDL Cholesterol, Non-HDL cholesterol. Lipoprotein (a) showed negative correlation with Chol/HDL

60 ★ GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS

			VC	OLUME - 11, I	SSUE - 06, JUNE -	2022 •	PRINT	ISSN <mark>N</mark>	o. 2277 - 3	8160 • D	OI : 10.3	86106/gjrc
ratio, LDL/HDL ratio, Triglycerides level, VLDL Cholesterol.					Apolipoprot eins Al		0.001 7					
Table No.8	N	Correlation Coefficient (r)	95% CI of	Р		Nor mal	Ref					
Variables			r	value		High	0.035 6	0.427 6	0.19 to 0.94			
Apolipoproteins Al	79078	0.09289	0.0859 to 0.0998	<0.000 1		Low	0.006	0.681	0.52 to			
Apolipoproteins B	79078	0.05995	0.05300 to 0.0668	<0.000 1	Apolipoprot eins B Apolipoprot eins B/A1		< 0.00					
Apolipoproteins B/A1	79078	0.0006	-0.0062 to 0.0076	0.8467		Nor	Bef					
Cholesterol Total	61536	0.05391	0.04603 to 0.06178	<0.000 1		mal High	0.007					
HDL Cholesterol	61537	0.1099	0.1021 to 0.1177	<0.000 1		Low	5 <0.00	0.374	0.29 to	< 0.00	0.545	0.42 to
Chol/HDL Ratio	61527	-0.05233	-0.0602 to -	- <0.000 1			01 <0.00	1	0.48	01	6	0.71
LDL Cholesterol	58938	0.06093	0.0528 to	<0.000		Nor	01					
LDL/HDL Ratio	58935	-0.01052	-0.01860 to	0.0106		mal	Ref	0.741	0 50 40			
Non HDL	61571	0.02599	0.01809 to	< 0.000		High	0.011	4	0.39 10			
Cholesterol Triglycerides level	61556	-0.07525	0.03388 -0.08310 to	1		Low	4	0.334 4	0.18 to 0.61			
VLDL Cholesterol	58926	-0.05832	-0.06739 -0.06636 to	1	Cholesterol Total		0.708 3					
In multivariate logi	stic reg	ression anal	-0.05027 yses (Table	1 No. 9),		Nor mal	Ref					
HHcy was associate	d with ris	sk age above) and males w	41years stat ere at increa	tistically used risk		High	0.422 2					
adjusted odds ratio $[OR] = 2.4405$ (p value < 0.0001). HHcy was associated with increasing risk of low HDL-C (HDL-C <						Low	0.851 5					
40mg/dl; adjusted odds ratio [OR] =1.1293, 95% confidence interval [CII: 1.0923-1.1675. P < 0.0001) hypertrialyceridemia					HDL Cholesterol		<0.00 01					
$(TG \ge 500mg/d];$ adjusted $OR = 1.33, 95\%$ CI: 1.0607–1.6676, P < 0.0001) bird CHOL/HDL (CHOL/HDL > 5; adjusted $OR =$						Neg	Ref					
1.2235, 95% CI: 1.1752–1.2737, P < 0.0001), high LDL/HDL (LDL/HDL \ge 3.5; adjusted OR = 1.2378, 95% CI: 1.1737–1.3055, P < 0.0001), high LDL-C (LDL-C > 150mg/dl;						Bord erlin e	<0.00 01	0.889 8	0.87 to 0.91			
adjusted odds ratio $[OK] = 1.8/63$, 95% confidence interval [CI]: $1.744 - 2.0321$, P < 0.0001) and high non HDL-C (non HDL C > 160mg/dl, gd/gd/gd/gd/gd/gd/gd/gd/gd/gd/gd/gd/gd/g						Majo Risk	<0.00 01	1.129 3	1.09 to 1.17			
confidence interval [CI]: $1.0113 - 1.1714$, P < 0.0001) after adjusting the confounders. However, there were no significant					Chol/HDL ratio		<0.00 01	-				

Table No.9

Lipoprotein (a).

Parameters	Univo	ariate a	inalysi	Multivariate analysis				
	Vari able	P value	OR	95% CI OR	P value	OR	95% CI OR	
Age Group		<0.00 01						
	18 - 30	Ref			Ref			
	31 - 40	0.310 7			<0.00 01	0.918	0.88 to 0.95	
	41 - 50	<0.00 01	0.912 8	0.88 to 0.94	<0.00 01	0.798 5	0.7 to 0.83	
	51 - 60	<0.00 01	0.845 2	0.81 to 0.87	<0.00 01	0.746	0.71 to 0.77	
	>60	<0.00 01	0.871 8	0.84 to 0.90	<0.00 01	0.779 1	0.75 to 0.81	
Gender		<0.00 01						
	Fem ale	Ref						
	Male	<0.00 01	2.440 5	2.38 to 2.49	<0.00 01	2.589 9	2.53 to 2.65	

associations between Hcy and ApoA, ApoB, Apo B/A1, TC or

0.42 to 0.71 ratio Nor Ref mal <0.00 1.223 1.17 to 1.145 1.07 to 0.0002 High 1.23 01 1.27 9 5 Low <0.00 0.719 0.69 to < 0.00 0.783 0.74 to 01 9 0.7 01 7 0.83 LDL 0.000 Cholesterol 2 Opti Ref mαl Near 0.048 1.037 1.01 to Opti 3 1.08 5 mαl 1.094 1.04 to Bord 0.000 erlin 1 5 1.15 high High 0.014 1.061 0.98 to 0.0066 1.011 0.81 to 95 7 1.15 3 1.11 Very 0.011 1.876 1.74 to <0.00 1.679 1.57 to High 38 3 2.03 01 4 1.81 LDL/HDL < 0.00 Ratio 01 Nor Ref mαl

GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS * 61

VOLUME - 11,	ISSUE ·	- 06, JUN	E - 202	2 • PRINT	ISSN No	o. 2277	-8160 • D	OI : 10.36106/gjra
	High	<0.00 01	1.237 8	1.17 to 1.31	0.0256	1.102 2	1.01 to 1.20	to the differen
	Low	<0.00 01	0.779 1	0.79 to 0.80	<0.00 01	0.844 4	0.80 to 0.88	Qujeq et a
Lipoprotein (a)		<0.00 01						and found correlated
	Nor mal	Ref						correlated by Qin et
	Abno rmal	<0.00 01	0.488 2	0.42 to 0.56	<0.00 01	0.635 2	0.55 to 0.74	from 8043
Non HDL Cholesterol		<0.00 01						0.000), TC
	Opti mal	Ref						0.000), dia 0.000). Kis
	Desir able	0.000 4	1.070 2	1.03 to 1.11				lipids in o
	Bord erlin high	0.000 1	1.097 9	1.05 to 1.15	0.0007	0.907 6	0.85 to 0.96	associated HDL-C ar
	High	0.023 8	1.088 4	1.01 to 1.17	0.0257	0.887 4	0.79 to 0.98	However, Y
	Very High	0.007 5	1.019	0.90 to 1.15	0.0001			ischemich homocyste
		0.032 8						Luis et al was no si
	Nor mal	Ref						lipid profil relationsl
	Bord erlin hgh	0.868 6						relationsl between d between d
	High	0.101 2			0.0001	0.874 2	0.8 to 0.93	may be sig
	Very High	0.013 5	1.33	1.06 to 1.67	<0.00 01	0.908	0.86 to 0.98	Many stud
VLDL Cholesterol		0.065 4						independ closely as
	Nor	Ref						dementia,

DISCUSSION:

In our cross-sectional study, we found that homocysteine, TG, TC, LDL, Lipoprotein (α), non-HDL, VLDL and HDL-C levels were different between sexes. Homocysteine, TG, LDL, non-HDL, VLDL levels among females were lower than males, while HDL-C, TC, lipoprotein (α) in females was higher than males. Differences in homocysteine and lipid profiles among sexes may further lead to difference in the relationship between homocysteine and lipid profiles, along with the strength of the relationship.

Carlson et al has reported that the lipid profiles and lipoproteins between adult males and adult females differ from birth, and HDL-C of females is more than that of males at birth and at all ages after adulthood [7, 8]. Rosano et al observed that the level of homocysteine was low in the majority females during pregnancy, although it does not significantly differ from that of males of the same age in postmenopausal females which suggested that estrogen can reduce homocysteine level in premenopausal females [9, 10].

Thus, homocysteine and lipid profiles among females differ from males due to estrogen, which is a fat-soluble steroid hormone and is the main female sex hormone. Estrogen is involved in the development of the female reproductive system and maintains menstruation. It also plays a vital role in menstrual cycle and pregnancy, and has other physiological functions such as anti-platelet and regulating lipid metabolism as per Dimitrova et al [11].

The difference in relationship between homocysteine and lipid profiles among different sexes can mainly be attributed

to the differences in the physiological structure and estrogen of different sexes.

Qujeq et al. analysed 126 patients with myocardial infarction and found that homocysteine was significantly negatively correlated with HDL-C (r = - 0.93, p < 0.05), and positively correlated with LDL-C (r = 0.98, p < 0.05) [12]. In a study done by Qin et al [14] at the First Affilia ted Hospital of Guangxi Medical University from 2015 to 2016, blood was collected from 8043 patients undergoing physical examinations, Hcy was found to be positively correlated with TG (r = 0.084, p =0.000), TC (r = 0.045, p = 0.000), and LDL-C (r = 0.059, p = 0.000), and negatively correlated with HDL-C (r = - 0.189, p =0.000). Kiseljakovic et al [13] reported that there was negative association between serum hyper homocysteinemia and lipids in atherosclerotic vascular disease (ASVD) patients. Xiaona Niu et al study found that homocysteine was associated with high levels of TG, TC, LDL-C, and low level of HDL-C among Chinese population of Hunan, which was consistent with the above research results [2].

However, Yadav et al. study was conducted on 60 patients with ischemic heart disease had no significant correlation between homocysteine and TG, TC, and HDL-C [3]. In a study by de Luis et al conducted in 2005 on 155 diabetes patients, there was no significant correlation between homocysteine and lipid profiles [15]. Very few previous studies have studied the relationship between homocysteine and lipid profiles between different sexes [1,2]. The results of our study on relationship between are in concurrence to the findings of Niu et al and Momin et al [1,2]. This study suggested that there may be significant difference about the relationship between homocysteine and homosysteine and homosysteine and lipid profiles in different sexes.

Many studies have shown that elevated homocysteine is an independent risk factor for cardiovascular disease and closely associated with the development of atherosclerotic vascular disease (ASVD), coronary heart disease, diabetes, dementia, and other diseases [16, 17, 18,19]. Moreover, clinical and epidemiological studies have demonstrated that abnormal lipid metabolism is associated with atherosclerosis [20, 21, 22]. Abnormal lipid metabolism is also an important risk factor for atherosclerosis, and hyperhomocysteine can induce hyperlipidemia thereby damaging of blood vessels through various mechanisms [5].

Most studies suggesting mechanisms through which homocysteine affects lipid metabolism are mentioned below. As per Rubin et al, apolipoprotein A (Apo A–I) is the major protein component of HDL-C and overexpression of human Apo A-I can increase high-density lipoprotein level [23].

On contrary raised hyperhomocysteine may decrease expression of Apo A-I which may further reduce HDL- C synthesis, leading to the occurrence of cardiovascular disease as per Mikael et al [24]. Yideng et al. suggested that DNA hypomethylation could be a mechanism of homocysteine associated to abnormal lipid and atherosclerosis in vascular smooth muscle cells [25]. Werstuck et al suggested that homocysteine may enhance the expression of sterol regulatory element binding proteins (SREBP) and increase the intracellular accumulation of TC and TG in cells [5].

This study showed that hyperhomocysteine was negatively correlated with HDL-C and positively correlated with LDL-C, total cholesterol, triglycerides among Indian population, which was in concurrence with the previous experimental studies. However, only few studies done on the relationship between homocysteine and lipid profiles between different sexes. Although this study explores large sample of population data to establish the difference in the relationship between the between homocysteine and lipid profiles

VOLUME - 11, ISSUE - 06, JUNE - 2022 • PRINT ISSN No. 2277 - 8160 • DOI : 10.36106/gjra

7:133-135

between different sexes.

To summarize, studies involving the association between homocysteine and lipid profiles have had been inconclusive. As per Xiaona Niu et al, the discrepancy is due to either the selected subjects have different types of diseases or they are from different ethnic groups [2]. So, confounding factors are not controlled, or included confounding factors are different in regression analysis, which could also lead to different results.

Our study has random selection of subjects from urban population, which could be used to assess the correlation between homocysteine and lipid profiles providing enough statistical significance. Also, we used univariate analysis to control confounding factors which could have possibly affected homocysteine levels. Our study analyzed the relationship between homocysteine and lipid profiles among urban based population and gender based, however, being very few studies aimed at establishing the association. However, our study has limitations such as we cannot eliminate unknown confounding factors such as dietary habits of subjects or subjects consuming some drugs, which may interfere with homocysteine and lipid profiles. Also, our study was cross-sectional study and could not establish a causal association between the homocysteine and lipid profiles. Due to the unavailability of such data, detailed evaluation cannot be performed.

The regression analysis showed that hyperhomocysteine was also associated with hypertriglyceridemia, hypercholesterolemia, high level of LDL-C and low level of HDL in males and females from Indian community based population, which would help to establish treatment of abnormal lipid metabolism and prevention of cardiovascular risk.

CONCLUSION:

The present study has analysed the relationship between homocysteine and lipid profiles among Indian communitybased population. We have limited confounding factors by usage of univariate analysis among randomly selected subjects. Hyperhomocysteine was independently associated with an increasing risk of low HDL-C among males. The regression analysis showed that hyperhomocysteine was also associated with hypertriglyceridemia, hypercholesterolemia, and high level of LDL-C in males more than females from Indian community based population, which would form the basis of management and prevention of abnormal lipid metabolism.

REFERENCES:

- Momin, M., Jia, J., Fan, F., Li, J., Dou, J., Chen, D., Huo, Y., & Zhang, Y. (2017). Relationship between plasma homocysteine level and lipid profiles in a community-based Chinese population. Lipids in Health and Disease, 16(1). https://doi.org/10.1186/s12944-017-0441-6
- Niu, X., Chen, J., Wang, J., Li, J., Zeng, D., Wang, S., & Hong, X. (2021). A Crosssectional Study on the Relationship Between Homocysteine and Lipid Profiles Among Chinese Population from Hunan. Lipids, 56(1), 93–100. https://doi.org/10.1002/lipd.12279
- Yadav, A. S., Bhagwat, V. R., &Rathod, I. M. (2006). RELATIONSHIP OF PLASMA HOMOCYSTEINE WITH LIPID PROFILE PARAMETERS IN ISCHEMIC HEART DISEASE. In Indian Journal of Clinical Biochemistry (Vol. 21, Issue 1).
- Tian, L., & Fu, M. (2010). The relationship between high density lipoprotein subclass profile and plasma lipids concentrations. In Lipids in Health and Disease (Vol. 9). https://doi.org/10.1186/1476-511X-9-118
- Werstuck, G. H., Lentz, S. R., Dayal, S., Hossain, G. S., Sood, S. K., Shi, Y. Y., Zhou, J., Maeda, N., Krisans, S. K., Malinow, M. R., & Austin, R. C. (2001). Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. Journal of Clinical Investigation, 107(10), 1263–1273. https://doi.org/10.1172/JCI11596
- Cohen, E., Margalit, İ., Shochat, T., Goldberg, E., & Krause, I. (2019). Gender differences in homocysteine concentrations, a population-based crosssectional study. Nutrition, Metabolism and Cardiovascular Diseases, 29(1), 9–14. https://doi.org/10.1016/j.numecd.2018.09.003
- Carlson, L. A., & Ercisson, M. (1975) Quantitative and qualitative serum lipoprotein analysis. Part 1. Studies in healthy men and women. Atherosclerosis, 21:417–433.
- Carlson, L. A., &Hardell, L. I. (1977) Sex differences in serum lipids and lipoproteins at birth. European Journal of Clinical Investigation,

- Rosano, G. M., Maffei, S., Andreassi, M. G., Vitale, C., Vassalle, C., Gambacciani, M., Mercuro, G. (2009) Hormone replacement therapy and cardioprotection: A new dawn? A statement of the study group on cardiovascular disease in women of the Italian Society of Cardiology on hormone replacement therapy in postmenopausal women. Journal of CardiovascularMedicine (Hagerstown, Md.), 10:85–92.
- Toprak, A., Erenus, M., Ilhan, A. H., Haklar, G., Fak, A. S., &Oktay, A. (2005)The effect of postmenopausal hormone therapy with or without folic acid supplementation on serum homocysteine level. Climacteric, 8:279–286.
- Dimitrova, K. R., DeGroot, K., Myers, A. K., & Kim, Y. D. (2002)Estrogen and homocysteine. Cardiovascular Research, 53: 577–588.
- Qujeq, D., Omran, T. S., &Hosini, L. (2001) Correlation between total homocysteine, low-density lipoprotein cholesterol, and highdensity lipoprotein cholesterol in the serum of patients with myocardial infarction. Clinical Biochemistry, 34:97–101.
- Kiseljakovic, E., Valjevac, A., Hasic, S., Nakas-Icindic, E., Dzubur, A., &Jadric, R. (2011) Association of homocysteine with traditional and non-traditional risk factors in patients with atherosclerotic vascular disease. MedicinskiGlasnik (Zenica), 8:126–133.
- Qin, Y. Y., Wang, P., Qin, J. Q., Wei, A. Q., Huang, P., Lai, Z. F., & Lin, F. Q. (2018) Prevalence of hyperhomocysteinemia during routine physical examination in Guangxi Province, China and related risk factors. Journal of Clinical Laboratory Analysis, 32:e22178.
- De Luis, D. A., Fernandez, N., Arranz, M. L., Aller, R., Izaola, O., & Romero, E. (2005) Total homocysteine levels relation with chronic complications of diabetes, body composition, and other cardiovascular risk factors in a population of patients with diabetes mellitus type 2. Journal of Diabetes and its Complications, 19:42–46.
- Ikonomidis, I., Makavos, G., Papadavid, E., Varoudi, M., Andreadou, I., Gravanis, K., Lekakis, J. (2015) Similarities in coronary function and myocardial deformation between psoriasis and coronary artery disease: The role of oxidative stress and inflammation. The Canadian Journal of Cardiology, 31:287–295.
- Li, M., Wang, X., Mi, S. H., Chi, Z., Chen, Q., Zhao, X., &Nie, S. P. (2016) Shortterm prognosis of fragmented QRS complex in patients with non-ST elevated acute myocardial infarction. Chinese Medical Journal, 129:518–522.
- Peng, H. Y., Man, C. F., Xu, J., & Fan, Y. (2015) Elevated homocysteine levels and risk of cardiovascular and all-cause mortality: A meta-analysis of prospective studies. Journal of Zhejiang University. Science. B, 16:78–86.
- Saadeddin, S. M., Habbab, M. A., & Ferns, G. A. (2002) Markers of inflammation and coronary artery disease. Medical Science Monitor, 8:A5–A12.
- Duncan, M. S., Vasan, R. S., &Xanthakis, V. (2019) Trajectories of blood lipid concentrations over the adult life course and risk of cardiovascular disease and all-cause mortality: Observations from the Framingham study over 35 years. Journal of the American Heart Association, 8:e11433.
- Gordon, D. J., Probstifiield, J. L., Garrison, R. J., Neaton, J. D., Castelli, W. P., Knoke, J. D., ... Tyroler, H. A. (1989) High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation, 79:8–15.
- Liao, J. K. (2008) HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. Current Atherosclerosis Reports, 10:281–283.
 Rubin, E. M., Krauss, R. M., Spangler, E. A., Verstuyft, J. G., & Clift, S. M. (1991)
- Rubin, E. M., Krauss, R. M., Spangler, E. A., Verstuyft, J. G., & Clift, S. M. (1991) Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature, 353:265–267.
- Mikael, L. G., Genest, J. J., & Rozen, R. (2006) Elevated homocysteine reduces apolipoprotein A-I expression inhyperhomocysteinemic mice and in males with coronary artery disease. Circulation Research, 98:564–571.
- Yideng, J., Jianzhong, Z., Ying, H., Juan, S., Jinge, Z., Shenglan, W., Shuren, W. (2007) Homocysteine-mediated expression of SAHH, DNMT, MBD2, and DNA hypomethylation potential pathogenic mechanism in VSMC. DNA and Cell Biology, 26:603–611.
- Antoniades, C., Antonopoulos, A. S., Tousoulis, D., Marinou, K., & Stefanadis, C. (2009) Homocysteine and coronary atherosclerosis: From folate fortification to the recent clinical trials. European Heart Journal, 30:6–15.