
1. INTRODUCTION
Milk is approximately 3.3% protein and contains all of the 
essential amino acids. The protein content of some milk 
varieties is shown in the nutrient content tables. Proteins are 
the fundamental building blocks of muscles, skin, hair, and 
cellular components. Proteins are needed to help muscles 
contract and relax, and help repair damaged tissues. 

They play a critical role in many body functions as enzymes, 
hormones, and antibodies. Proteins may also be used as an 
energy source by the body. Nine amino acids must be 
obtained from the diet and are referred to as the “essential” 
amino acids: leucine, isoleucine, valine, phenylalanine, 
tryptophan, histamines, threonine, methionine, and lysine. 
Proteins that contain all 9 essential amino acids are often 
called “complete” proteins. Proteins of animal origin and soy 
are complete proteins, whereas proteins from grains and 
legumes are missing 1 or more of the essential amino acids, 
which means that consumers must eat complementary foods 
in order to get all of the essential amino acids. Milk protein 
consists of approximately 82% casein and 18% whey (serum) 
proteins. Both casein and whey proteins are present in milk, 
yogurt, and ice cream. The content of specic nutrients in milk, 
important background information on the chemistry of milk 
energy, fat, water, protein and enzymes.

Also, milk prevented to heart health disease, diabetes, weight 
loss, inammatory issues, growth and development cells, 
clear function of immune body systems and giving the 
strength for bones and teeth.  In this paper, we analyzed cow 
milk for improving the yield through the four different types of 
treatments.

The Mann-Whitney test for two samples or the Kruskal-Wallis 
test for k samples could be used for testing differences in 
treatment effects under a completely randomized design 
(Kruskal and Wallis, 1953). Analysis of variance is the 
fundamental tool for analyzing data from designed 
experiments (Cochran and Cox, 1957; Searle, 1971). The 
randomization protocol reduces any bias in favor of particular 
treatments, while the blocking enables extraneous variation 
to be absorbed into block effects. Consequently, one obtains 
better estimates of treatment effects and more powerful tests 
for treatment differences.

Blocking refers to the division of experimental runs into 
smaller sub-groups, or blocks. Each treatment is applied 
randomly to a number of subjects within each block. This 
design, known as a Randomized Complete Block Design 
(RCBD), is commonly employed in biological experiments, 
where, for example, experimental runs on a given day may be 
treated as a block (Sokal and Rohlf, 1981). Mafra-Neto and 
Cardé (1998) utilized an RCBD to test the effect of treatments. 

Linn et al. (1996) explained that they do not have a complete 

randomization protocol; however, they analyzed their 
experimental data using an ANOVA. Hollander and Wolfe 
(1999) proposed several well-known nonparametric tests exist 
for testing differences in treatment effects depending on the 
type of design used. 

2. MATERIALS AND METHODS
Four different treatments have been applied to the four 
different cows and the milk yield were collected.  Based on this 
data sets, RCBD with m=29 observation per cell have been 
applied and the results are discussed.

2.1.  RCBD
In this design, the whole experimental materials is divided 
into homogeneous groups, each of which constitutes a single 
replications. Each of these groups is further divided into a 
number of experimental units which are equal in all respects. 
The treatments are applied to these units by any random 
process. In case of eld experiments, if it is observed that the 
fertility gradient of the eld is in one direction, the whole eld 
may be divided into a number of equal blocks and then each 
block be divided into a number of equal plots. The number of 
plots in each block is equal to the number of treatments, so 
that each block is a replicate of each treatment. 

Let there be k treatments. Each of the treatments is replicated 
the same number of times in this design. Let r denote the 
number of replications of each treatment. The total number of 
experimental units is therefore, kr. These units are arranged 
into r groups, each of size k. The error control measure in this 
design consists of making the units in each of these groups 
homogeneous. These groups are commonly known as blocks 
and experimental units in the blocks are known as plots.

The following points are important for this design.
(a)  The number of blocks must be equal to the number of 

replications xed for each treatment.
(b) The number of plots in each block should be equal to the 

number of treatments.
(c) An important and essential point, on which the attention is 

kept, is that the experimental errors within each block are 
to be kept as small as practically possible and the 
variation from block to block as great as possible. In this 
way all the treatments which are assigned to one block, 
experience the same type of environmental effects, and 
are, therefore, comparable.

(d) Randomization of treatments in each block should be 
afresh.

The Randomized Block Design (RBD) is often called the 
Randomized Complete Block Design (RCBD) because each 
block contains a complete set of treatments.

The design provides a two-way classied data according to 
the levels of two factors, viz., blocks and treatments. For its 
analysis the following model is taken:
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                                                  i=1,2,3, …, k and j = 1,2,3, …, r.

thwhere y  is the yield obtained from the j  block, receiving the ith ij

treatment, µ is the general mean, ti is the ith treatment effect 
thand b  is the effect j  block and eij is the error component. The j

error components are assumed to be independently and 
normally distributed with zero mean and constant variance 

Table 1:  Randomized Complete Block Design

th
Let           (i = 1, 2, 3, 4, … , k) be the total i  – treatment and 
                     

th                (j=1,2,3, … , r) be the total of j  block.

Ÿ Grand Total = G=  

Ÿ Correction Factor (C.F.) =  

Ÿ Raw Sum of Squares =  

Ÿ Total Sum of Squares (TSS)=Raw Sum of Squares – C.F.

Ÿ Treatment Sum of Squares = TrSS =  

Ÿ Block Sum of Squares = BSS =  

Ÿ Error Sum of Squares ErSS = TSS – TrSS – BSS.

Table 2: Analysis of Variance of a Randomized Block Design

The hypothesis that the treatments have equal effects is tested 
by F-test where F is the ratio of   with (k-1) and (r-1)(k-1) 
degrees of freedom. If F is non-signicant the data do not 
suggest that the treatment effects are different. When F is 
signicant, we conclude that the treatment effects are 
different.

2.2. Critical Difference
If the treatments show signicant effect, then we would be 
interested to nd out which pair(s) of treatments differ 
signicantly. For this, instead of calculating Student’s t for 
different pairs of treatment means, we calculate the Least 
Signicant Difference (L.S.D) at the given level of 
signicance. This least signicant difference is known as the 
Critical Difference (C.D).

The C.D. between any two treatment means, say    and    at 
level of signicance ‘α’ is given by:

           = [The critical value at level of signicance α 

and error d.f.]  x

But stands for 

where       provides an unbiased estimate of the error variance 

In particular, if                    if each treatment is 
replicated n times, then 

Here        is the right-tailed critical value of t for v d.f. at level of 
signicance , so that

If the difference       between any two treatments means is 
greater than CD (or LSD). It is said to be signicant, otherwise 
it is not signicant.

2.3.  Two-way analysis of variance
As with the t-test and the one-way ANOVA, we assume that the 
variances are homogeneous. In a manner analogous to the 
one-way ANOVA’s within-group sums of squares, we can 
calculate a within-cells sums of squares and corresponding 
degrees of freedom which under the assumption of constant 
variance, can be used to obtain a pooled variance common to 
all cells:

within-cells DF = ab(n – 1),
where: a = number of levels in factor A
b = number of levels in factor B
n = number of replicates.

2The pooled variance (s ), which is the best estimate of σ2, is p

found by

We also need an estimate of the variability among the cells. 
This is analogous to “groups” in the one-way ANOVA:
cells SS= 

cells DF = ab – 1.
Finally, we need to know the variability among all the data, N, 
which is also analogous to that of the one-way ANOVA:

total SS =

In a two-way ANOVA, we typically want to know about the 
differences between the two factors when considered 
independently. Thus, we want to examine the specic 
components of the cells

SS and cells DF. We can examine these differences by only 
considering one factor at a time in the ANOVA. So, for factor A:

SS(A) =
 
DF(B) = b – 1.

However, the sums of squares and degrees of freedom for 

ijjiij ebty +++m=

2s

Treatment Blocks Totals

1 2 … j … r

1 y11 y12 … y1j … y1r T1.

2 y21 y22 … y2j … y2r T2.

3 y31 y32 … y3j … y3r T .3

: : : : : : : :

: : : : : : : :

i yi1 yi2 … yij … yir T .i
: : : : : : : :

: : : : : : : :

k yk1 yk2 … ykj … ykr T .k

Total B.1 B.2 … B.j … B.r y =G..

å
=

=
r

1j
iji yT

å
=

=
k

1i
ijj yB

åå
==

=
r

1j
j

k

1i
i BT

)r*k(

G2

åå
= =

k

1i

r

1j

2
ijy

.F.CT
r

1 k

1i

2
i -å

=

å
=

-
r

1j

2
j .F.CB

k

1

Source of 
Variation

Degrees of 
freedom

Sum of Squares Mean Square F

Blocks r-1

Treatments k-1

Error (r-1)(k-1) By subtraction

Total rk-1

å
=

-
r

1j

2
j .F.CB

k

1

å
=

-
k

1i

2
i .F.CT

r

1

åå
= =

-
k

1i

r

1j

2
ij .F.Cy

2
BS

2
TS

2
ES

2
E

2
B

S

S

2
E

2
T

S

S

2
E

2
T

S

S

.iy .jy

( ).j.i yy.D.C -

[ ])XX(E.S ji ->

( )
ji

e.j.i

j

2
e

i

2
e

.j.i
n

1

n

1
yy.E.S

nn
)yy(V +s=-Þ

s
+

s
=-

÷
÷

ø

ö

ç
ç

è

æ
+a=

÷
÷

ø

ö

ç
ç

è

æ
+a=-\ --

ji

Ekn

ji

kn.j.i
n

1

n

1
s).2/(t

n

1

n

1
E.S.S.M).2/(t)yy(.D.C

2
eS

2
es

n/2S).2/(t)yy(.D.C Ekn.j.i a=- -

)(t v a

a=a> )](tt[P v

.j.i yy -

  X 27GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS

VOLUME - 11, ISSUE - 03, MARCH - 2022 • PRINT ISSN No. 2277 - 8160 • DOI : 10.36106/gjra



factor A and factor B will not exactly sum to the cells SS 
because of interaction between the factors. The relationship is 
additive and it can be expressed as:

SS(AxB) = SS(Cells) – SS(A) – SS(B),
DF(A x B) = DF(Cells) – DF(A) – DF(B) = (a – 1)(b – 1).

An interaction between the two factors implies that they are 
not independent of each other. We will test interaction to 
determine if it is actually signicant in an upcoming example.

As with the one-way ANOVA, you can divide the different SS by 
their corresponding DF to obtain a variance, called a mean 
square:

Error MS is usually called the mean square error (MSE). As 
with the one-way ANOVA, these ratios are F-distributed. So, we 
can calculate corresponding F-statistics and compare to a one 
tailed critical value from the F-distribution for our hypothesis 
tests:

Table 3: Two-way Analysis

F=         (MS(A))/MSE , for Ho: no effect of factor A on response 

variable

F=       (MS(B))/MSE , for Ho: no effect of factor B on response 
variable

F=              for Ho: no interaction between factor A and factor 
B.

We reject any Ho if  F ≥ F_critical; otherwise, we do not reject 
H0

At this point, we can now construct our theoretical ANOVA 
table:

3. RESULT AND DISCUSSIONS
Analysis of Variance is a hypothesis testing procedure that 
tests whether two or more means are signicantly different 
from each other. A statistic, F, is calculated that measures the 
size of the effects by comparing a ratio of the differences 
between the means of the groups to the variability within 
groups. The larger the value of F, the more likely that there are 
real effects. The obtained F-ratio is compared to a model of F-
ratios that would be found given that there were no effects. If 
the obtained F-ratio is unlikely given the model of no effects, 
the hypothesis of no effects is rejected and the hypothesis of 

real effects is accepted. If the model of no effects could explain 
the results, then the null hypothesis of no effects must be 
retained. 

Table 4: Result of RCBD

Hypothesis:
Null Hypothesis:
There is no signicance difference between blocks yield

Alternative Hypothesis:
There is signicance difference between blocks yield

From the above table, the null hypothesis states that the mean 
blocks milk yield values of 4 different blocks are not equal. 
Because the p-value is 0.001, which is less than the signicance 
level of 0.05, you can reject the null hypothesis and conclude that 
some signicance difference between blocks cow milk yields.

Table 5: Result of Critical Difference

2R  is the percentage of variation in the response that is 
2explained by the model. R  is always between 0% and 100%. 

2The higher the R  (0.95) value, the better the model ts for milk 
yield data. Average mean yield is 142.86 liters.  

Table 6: Result of Two-way analysis of Variance

The above table shows that the "Sig." value (.001) is less than 
.05 and the null hypothesis must be rejected. If the alpha level 
had been set at .01, or even .001, the results of the hypothesis 
test would be statistically signicant. 

4. CONCLUSIONS
There is a signicant difference between the month to month 
yields also the treatment effects were found to be signicant. 
However, the exact signicance level and let the reader set his 
or her own signicance level. It shows that food B is giving 
better yields compare with others.
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Source of
Variation

Sum of Squares 
(SS)

Degrees of
Freedom 

(DF)

Mean 
Square 

(MS)

F-
statistic

Cells ab-1 F= 

Factor A a-1 F= 

Factor B b-1 F= 

A x B SS(Cells)–SS(A) – 
SS(B)

(a-1)(b-1)

Error ab(n-1)

Total N-1

Number of Observations Read 32

Number of Observations Used 32

Source DF Sum of 
Squares

Mean 
Square

F 
Value

Pr 
> F

Model 10 92794.56500 9279.45650 41.26 <.0001

Error 21 4723.20375 224.91446

Corrected Total 31 97517.76875

R-Square Coeff Var Root MSE yield Mean

0.951566 10.49715 14.99715 142.8688

Source DF Anova SS Mean Square F Value Pr > F

block 7 56537.87375 8076.83911 35.91 <.0001

tr 3 36256.69125 12085.56375 53.73 <.0001
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