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ABSTRACT The present investigation is concerned with the response of heat sources in porous thermoelastic material

with one relaxation time. The problem is solved subjected to thermomechanical boundary conditions by
the use of Laplace and Fourier transforms. A concentrated or continuous source at the boundary surface has been taken to
illustrate the utility of the approach. The transformed components of displacement, stress, change in volume fraction field and
temperature distribution are inverted by using a numerical inversion technique. The numerical results of normal displacement,
normal stress, change in volume fraction field and temperature distribution are illustrated graphically for various heat sources
namely (i) distributed heat source(ii) continuous heat source (iii) heat source varying with depth. Some particular cases are also

deduced from the present formulation.

1.INTRODUCTION

Biot [1] formulated the theory of coupled thermoelasticity to
eliminate the paradox inherent in the classical uncoupled
theory that elastic changes have no effect on the temperature.
The heat equations for uncoupled and coupled theories of
thermoelasticity, however, are of the diffusion type, predicting
infinite speeds of propagation for heat waves contrary to
physical observations.At present, there are various theories of
generalized thermoelasticity. The first important
generalization to the coupled theory is due to Lord and
Shulman(2], who obtained a wave type heat equation by
postulating a new law of heat conduction (the Maxwell-
Cattaneo equation)to replace the classical Fourier law.
Because the heat equation of this theory is of wave type, it
automatically ensure finite speeds of propagation for heat
and elastic waves. The remaining governing equations for this
theory, namely, the equations of motion and constitutive
relations, remain the same as those for the coupled and
uncoupled theories.Joseph and Preziosi[3,4]state the
Mazxwell-Cattaneo equation is the most obvious and simple
generalization of the Fourier law that give rise to a finite
propagation speed. The comprehensive work has been done
in coupled theory(CT) and generalized theories of
thermoelasticity with heat sources.

We consider a theory for the behavior of porous solids such
that the matrix material is elastic and the interstices are void of
material; it is a generalization of the classical theory of
elasticity. The theory of porous elastic material has been
established by Cowin and Nunziato [5,6,7]. In this theory the
bulk density is the product of two scalar fields, the matrix
material density and the volume fraction field; it is studied in
the book of Ciarletta and Iesan [8,9]. This theory has practical
use for investigating various types of geological and
biological materials for which elastic theory is inadequate.
This theory is concerned with elastic materials consisting of a
distribution of small pores (voids), in which the voids volume
isincluded among the kinematics variables and in the limiting
case of volume tending to zero, the theory reduces to the
classical theory of elasticity. The first investigation in the
theory of thermoelastic materials with voids are due to
Nunziato and Cowin [4] and Iesan [9]. The linear theory of
thermoelastic maerials with voids was presented in [9](see
also [10]). Different authors has been discussed different
types of problem in linear thermoelastic materials with voids
[11,12,13,14,15,16,17,18].

In the present investigation the response of heat sources in
porous thermoelastic material with one relaxation time is
studied by the use of application of integral transforms. At the
half-space surface the tractions and temperature are
prescribed. The transformed components of displacement,
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stress, change in volume fraction field and temperature
distribution are obtained due to various heat sources
subjected to thermomechanical loads. The results of papers
may be applied to a wide class of geophysical problems
involving temperature change. Application of the paper may
be found in mechanics viz. in designing highways and airport
runaways. The problem has practical applications in the field
of geomechanics , engineering, fibre-wound composites and
laminated composite materials.

2.Basic Equations

Following Cowin and Nunziato [6]and Lord and Shulman [2],
the field equations and constitutive relations in porous
thermoelastic material with one relaxation time, without body
forces and extrinsic equilibrated body force can be written as:
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3. Formulation And Solution of The Problem

We consider a homogeneous, isotropic, porous thermoelastic
half space with one relaxation time in theundeformed
temperature . The rectangular Cartesian coordinate system (
%, v, z ) having origin on the®*z = 0 with z - axis pointing
normally in to the medium is introduced. For two dimensional
problem, we assume

i A, 0, w) (5)

To facilitare the solution, following dimensionless quantities are introduced:
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The expressions relating displacement components u( x, z, t)
and w( x, z,t ) to the scalar potential functionsyl(x, z, t) and y2
(%, z,t) in dimensionless form are given by
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Using (3H7). in equations (1)-(4) (after suppressing the primesiand applying the Laplace and Fourier
mmasforms defined by fluzg =£ € f(x, 2.0, (8)
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Tsing equation (15) in equation (11}, we obiain
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where 200 12,3 e the roots of the following cheracteristic equation
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The solution of equation (17 can be written i the form
Tafj+Ti+3,-1,, (19)
where f{ 15 the solution of the homogeneous equation
(P=-A)F=0 =123 (20)

and § isa particular solution of equation (17).
The solutions of equations (20) and (13), which satisfies the radiations conditions, can be written as

T =de™ =123, 21

=A™, (22)

27

Also using equations (23} and (26} in equation (16}, we obfain the salution of [ as
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4. Boundary Conditions
The appropriste boundary conditions are
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Substituting the value of ;. ; andd = e sparions (2223, (281291 and (32e33) in

AR T
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Substituting the values of Al, A2, A3, and A4 from (42)-(45) in
equations (30)-(33), (29) and (23) with the help of equation(46),
we obtain the values of displacement components, stresses,
change involume fraction field and temperature distribution.
We shall take the heat sources of the form
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where 0y, a d are constants and & and s are the Dirac Delta function and Heaviside unit step function,

respectively.
By replacing the valties of 5 from equation (47) in equations (24) and (27). we obtain the components of

displacement. stress, change in volume fraction field and temperature distribution. respectively.
5. Applications

wetake g and g ooop as
where
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for concentrated 'contimions load.

Applying the I.apla;‘e m;; Fourier transforms defined by (&) and (2) on equation (48), we obtain
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The components of displacement, stress, change in vohune fraction fiekd and temperature distrbution are
obain by replacine thevaluesof = ¢ and . E.s) from eovation (49) in equations (30-(33L

Al s £l
(29) and (23) with the help of equations(42)-(47).

6. Particular Cases

(i) The corresponding expressions are obfamed for mechanical and thermal source by taking p, =0 and
£, — 0 in equatioas (42)-(45), respectively,

(HIF 7, = 0 i equations (30)(33).(29) and (23) aloag with equations (42)-{47) and (49), we obtained the

corresponding expressions of the porous thermoslastic half-space with heat sources,

(i) I we neglect the voids elfecl for b 20w o oy o ooy 00, I equations (300-(3301 and (23],
el with the help of equations [42) (471 and (49, we obdamed the components of displacemsnt, siress
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7. Inversion of the transforms
To obtain the sohution of the problem in the physical domain. we must invert the transforms in equations

(300-{33). (29) and (23) by using equation (49) and with the help of equations (42} -(47) for coupled theory
(CT). Lord and Shulman theory(L-S) with one relaxation time. These expressions are finctions of = he
‘parameters of Laplace and Fourier transformis 5 and & , respectively, and hence are of the form 1% 2,5 ).
To get the fimction f{x = 5. in the physical domain, First we mvert the Fourier transform nsing

3 1 -y = L f

Fenave— T e Fi s st a=iF (easign)f, = st fy s, (SO)
Where [, and Fg ™o vespectively, even and odd parts of the fanction [y L 2.0 ), Tluos expression (30)
gives us the Laplace transforin |7 x.2.5 b, of the fimetion f¢.v.2.1 )

Thieu, for the fixed values of & v and = the fixz.5) inthe expression (50) coan be considered
as the Laplace tramsform E(s)of git) Following Homg and Hirdes [19], the Laplace transformed
frnetion §¢ s ) can be inverted as given below. The function g(t) can be obiained by nsing.
rir= .I et TN 50

where X is an arbitrary veal nnmber grester than all the real pans of the singularities of S¢sj.
Takimg s = X +¢ 1, we get
A

5
gttt — L e HX 100 (52)
ir

New, taking « g 8 fe) mnd

expanding it as Fourier sevies in |2,2L), we obtain approximately dhe formmla

gl=ggt+Ep.

0y £ XL,
where
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£ - " .
¥, | e TE T ] (53]
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Fp 1 the discretization eror and 2 be made arbiranily small by choosing X large encugh: Hoaig and
Thredes [19]
As the infinite series in equation (30 can be summed up ouly to a finite number of N terms, so

the approximate value of g(f) becomes

(5
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Now, we introduced a tnincation error £y, that must be added to the discretization eror to produce the
total approximate ervor in evaluating g{t) using the above fonmula. To accelerate the convergence. the
discretization emor and then the truncation erroris reduced by using the 'Komekinr- method” and the * €-
algoitinn® . respectively as miven by Hondg and Hirdes [19]

The The Korrekinr method formula, to evaluate the fimction g{1) is

-1¥L
=gl -8 golL+t)s Ep

where the descretization emor Ep|<<l&p

Thus. the approximate value of g{t) becomes

2L -
Ty =gy th-e Ear 2L + 1),

where N' is an integer such that N*< N

We shall now deseribe the < - algorithm, which is vsed to accelerate the convergence of the series
in equation (54}, Let N be an odd natural oumber and 5, = 207, &, be the sequence of partial sums of the
equation (343, We define the' = - sequence’ by

1
Z0m=t Sl = Fue Spalem ~Fnolmel T —— . mm=123.
Somtl T Snan

X . . .
The sequeace =y . =3 ... oo=y g CONVEIRES 10 gr) 4 Ep — T2 faster than the sequence of partial

suns Seom = 120 3., The acial procedure to invert the Laplace transform consists of equation (52}

toether with the ' = —algonth’.

The last step 15 to caloulate the integral in equation {500, The method for svaluating this mtegral is

deseribed Press eof al [20], which mvolves the use of Romberg's intepration with adaptive step size. This

also uses the results from successive refinements of the extended trapezeidal rule followed by extrapolation

of the results to the limic when the step size tends to zero.

8. Numerical Results and Discussion
With fhe view of illusmating and compare the theeretical tesults obtamed above in the contexr of the Lovd
and Shulman(L-5) theory of thermeelasticity.we now present :omenumerical results. The physical data for

thermaoelastic material is taken from Sheriet and Helmy [21]

o s , . s 3
i=7 w0 im | e300 N im | K 23862107 W mdeg, p=0.854 107 Kg

anel the virids parinElErs are

R e TR F e

=t ot den e, = DEED x0T W w7 The comparizon were earried out for
Bi=Pyml 1 =00 Qpma-d-tel
The comparison of ol disphemment W, normal sres | chinge in volane faction Geld o, ol

temperature distribution 7, due to verious heat sources namely (1dhsiributed

hieat sonwee( Q) (ilcontiniens heat sowee(QIT) (i jhear sowrce varving with depth{QTIT) with and withowt

voids hive been sindisd for comesnirated o ical sousces, respeclively. The
voriations of novmal displacement w, noomal stress ¢ and temperatore distibution ¥ . these
components with distanes . have been shown by (1) solid line with voids

(QIV) el salid e willy contered symbol circle withonut voids (QTW) for (QTHG) Tong dashed e with

vedds (QUV) and lomg dashed line with centered symbel square without voids (QIW) for (QLE) (1) small
dashed line with voids (QTTV and small dashed Tine with centered symbel timgle withont voids (QTTTW)
fior (L) andl the variations of change i volume Goclion Geld g, for UV QUYL QLYY hive been shown
by(ipsparse for QTV it jdense for (QIIV) Gimedivn for (QITTV) © al non-bimensional tne ¢ 0,5, in
figures [-6 and 7-8. respectively. The compurations are carvied in the range p< v < 10.

8.1 Thermomechanical source (concentrated/continuous)
Fig.l. shows the variations of normal displacement w  with
distance x. Thevalue ofw for (QIV)increasesinthe range 0 <
x < 2.2 whereas for (QIW) decreases in the same range and
oscillatory in the remaining range of x . The value of w for
(QIIV) increases slowly in the range 0 < x < 2.2 whereas for
(QIIW) increases sharply in the same range and oscillatory in
the remaining range of x . Also the behavior of variations of w
for (QIIIV,QIIIW)is oscillatory in the whole range of x . Fig.2.
shows the variations oft33 with distance x. The trend of
variations of t33 for (QIV,QIW) is same whereas the
correspondingvalues are different in magnitude. Also the
behavior of variations of t33 , for (QIIV,QIIW) is oscillatory in
the whole range of x, but the magnitude of oscillation is large
for (QIIV) in comparison to (QIIW). Nearthe point of
application of source, the value of 133 for(QIIIV) increases
sharply in the range 0 < x < 2.3whereas for (QIIIW) decreases
in the same range and in the remaining range of x the
behavior of variations of normal stress is opposite oscillatory
for (QIIIV,QIIIW),respectively. The magnitude of oscillations
decreases as x increases further. Fig.3. shows the variations of
temperature distribution T. with distance x . The values of T for
all type of heat sources is same i.e. near the point of
application of boundary source the values of Tdecrease in the
range 0 < x < 2 and oscillatory as away from the boundary
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source. Fig.4. shows thevariations of normal displacement w
with distance x . The behavior of variations w for (QIV,QIW) is
opposite oscillatory in the whole range of x . Also the behavior
of variations of w for (QIIV,QIIW) is same but magnitude of
oscillation of w for (QIIV) is more in comparison to (QIIW). The
trend of variations of w for (QIIIV,QIIIW) is same i.e. the values
of w first decrease in the range 0 < x < 2.8 andas x increases
turther it oscillate around zero. Fig. 5. shows the variations of
normal stress t,, withdistance x. The trend of variations of t*
for(except QIV) is same, i.e. the values of t33 for(except
QIV)first increase in the range0 £ x £ 2 whereas for (QIV)
decreases in the same range and then oppositeoscillatory in
the remaining range of x.

Fig 6. shows the variations of temperature distribution T
withdistance x.The values of T for (except QIV) decreses in
the range 0 <x < 2.2 and converge to zero valueas x
.increases further.Also the value of T for (QIV) decreases in
the range 0 < x < 2.5 whereas for (QIW) decrease in the same
range and oscillate with small magnitude value in the
remaining range of x . Fig.7 and 8. shows the variations of
change in volume fraction field ® due to concentrated/
continuous source with distance x. Near the point of
application of source, the values of f for (QIV) is more
ascompare for(QIIV,QIIIV). The value of f for (QIV) first
decreases sharply in the range 0 < x <2.4whereas for
(QIIV,QIIIV) decrease gradually in the same range and as x .
increases further the behavior ofvariations of @ is oscillatory.
To compare the variations the values of demagnified by
multiplying 10™.

9 CONCLUSION

The comparison of theory of porous thermoelasticity i.e. Lord
and Shulman theory(L-S) with one relaxation time due to
thermomechanical(concentrated or continuous) source with
various heat sources is carried out. It is observed that the
behavior of variations of normal displacement, change in
volume fraction field and normal strees for (QI, QII QIII) due to
concentrated source is similar to those for the continuous
source, with only difference in their magnitude value; with and
without voids, respectively.

Also it is noticed that the temperature distribution for
(QIIV,QIIIV), with voids are more in comparison to without
voids due to concentrated or continuous source, respectively.
The behavior of normal stress for (QIV) due to concentrated
source is opposite to that of the continuous source. It is
observed that the magnitude of normal displacement, normal
stress, change in volume fraction field and temperature
distribution follow an oscillatory pattern as x diverges from the
point of application of source.
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Fig.1. Variations of normal displacement w due
to concentrated source with distance x.
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