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This present study confronts the challenges arising from the prevalence of non- motor vehicles on two-
lane roads by developing and analyzing a lattice hydrody- namic (L-H) model that incorporates jerk 

dynamics. The research adopts a three- phase methodology, initiating with a comprehensive examination of the system's 
stability using linear analysis and phase diagrams. Subsequent phases involve an in-depth exploration of the derivation of the 
modied Korteweg–de Vries (mKdv) equation and its solution in non-linear analysis, particularly as trafc ow ap- proaches 
critical points during phase transitions. To substantiate the theoretical and analytical conclusions, the study employs simulated 
analysis, ensuring a thorough validation of the proposed model. The assessment highlights the model's exceptional 
performance, especially in the con- text of two-lane roads featuring non-motor vehicles, spanning both urban and rural 
environments. This present research provides the trafc ow dynamics, present- ing a nuanced understanding of how non-
motor vehicles impact two-lane road systems.
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1. INTRODUCTION
Trafc congestion has a direct impact on people's daily life, 
causing pollution, accidents, global warning and other issues 
due to the increasing number of auto- mobiles and 
modernization projects. As such, it has been imperative to 
perform theoretical and experimental research both to 
determine the underlying causes of trafc congestion in order 
to mitigate the issue.

Numerous mathematical models including car-following 
models [1, 2, 3, 4, 5], continuum models [6, 7, 8, 9, 10, 11, 12, 13] 
and lattice hydrodynamics models [14, 11, 15, 16, 17, 18, 19, 
20, 21, 22, 23, 24, 25, 26] have been presented in order
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and manage the intricate mechanism underlying trafc con- 
gestion. Examine the characteristics of the trafc- density 
wave in terms of the kink-antikink- soliton, Nagatani [27] 
originally devised the lattice hydrodynamics model. Following 
that, the LH (Lattice Hydrodynamic) model has been exten- 
sively reseatrched while taking into account number of factors 
, including impact of leading and backward sites [28, 29], 
effect of lane width and the anticipation of possible lane 
changes [30, 31, 32, 33, 34] delayed-feedback control [35]. In 
actual trafc scenario, abrupt vehicle acceleration and 
braking can result in con- siderable energy waste, increase in 
environmental pollution, trafc jerk and jam [36, 37, 38, 39, 40, 
41, 42].

2. Proposed Model
Ini tai ly,  Nagatani  [27]  devloped one-lane lat t ice 
hydrodynamic model for smooth trafc ow, which is
∂ρ (t) + ρ [q (t) − q (t)] = 0                                              (1)t j 0 j j−1

∂ (q (t)) = a[ρ V(ρ (t)) −ρv ]                                             (2)t j 0 j+1 j j

After that, Nagatani and others also deigned new models with 
different factors in one-lane [43, 44, 45, 46, 47].

In this direction a one lane L-H model with jerk due to non 
motors vehicles developed by Redhu [48]. This research is 
taken by the same continuity-equation remains same while 
changed the ow-evolution by adding the jerk parameter.

The modied evolution equation is
∂ (q (t)) = a[ρ V(ρ (t)) −ρv ] + ak[ρ v  −ρvj] − aë [ρv (t) t j 0 j+1 j j j+1 j+1 j j j

−ρv (t −ô)]   (3)j j

where q (t) = ñ (t)v (t), ñ (t) and v (t) are the local-density and j j j j j
thlocal-velocity at j  site on the two-dimensional lattice at time t, 

respectively. Here ñ , a = 1/ô, ë and k are the average density, 0

the driver's sensitivity, coefcient of jerk and coefcient of 
trafc ux respectively.

The following equation is of optimal velocity function:j
          (4)

where V  and ñ  denote the maximal-velocity and safety max c

critical density respec- tively.

It is well known that complex trafc congestion in urban areas 
is caused by non-motor vehicles suddenly accelerating and 
decelerating considered the impact of trafc jerk when 
developing a car-following trafc ow model and explaining 
how it affected jamming transitions. The micro-level analysis 
of the trafc jerk parameter indicates that non-motor vehicle 
motion irregularities exacerbate trafc jams, hence the trafc 
jerk parameter is crucial to understand trafc ow theory. 
However, it's also discovered that the ux differential effect is 
crucial for keeping the gridlock in place, which is related to 
non-motor vehicle motion. The temporal dynamics of the 
vehicle ow are represented by the jerk parameter prole and 
more non-motor vehicles on the road typically result in trafc 
congestion and ow instability. Furthermore, many 
researchers extended the one-lane model into two-lane model 
with different factors. Due to more trafc in one lane, the jam 
will increase. So, vehicles will need a second lane to get out of 
the jam and perform the better ow.

As a single lane fails to adequately depict the lane-changing 
dynamics observed in actual trafc scenarios. The lane 
change rule for two-lane is as follows:

In the event that the density on lane L2 surpasses that of lane 
L1 at location j-1, a seamless ow is achieved by directing 
vehicles from lane L2 to lane L1 at site j. Similar for lane 
change L1 to L2 lane. This is accurately reecting the real-
world trafc phenomena.

In urban and rural areas, roads are jammed due to irregular 
motion of non- motorized vehicles. For the rst time Redhu 
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checked the effect of trafc jerk on one-lane [48]. But,there are 
also two lane or multi lane roads where jam is due to 
acceleration or deceleration of non motor vehicles.

The proposed model depends upon two-lane LH model with 
Jerk parameter. The modied continuity equation is

     (5)

After removing velocity vj from Eqs. (3) and (5), density 
equation obtained as

                 (6)

where k is anticipation-coefcient of ux-difference and λ is 
jerk coefcient as above and ʏ is lane changing coefcient. 
When ʏ=0 it become basic model [48] for jerk effect on one 
lane and when k and ʏ both zero then it become Nagatani one-
lane model. In the proposed model k=/ 0, ʏ/= 0 and λ 0.

3. Linear analysis
To investigate the linear-stability of the trafc jerk on effect of 
two-lane. The trafc-density and optimal-velocity under 
uniform conditions are taken as ñ  and V(ñ ), respectively. Let 0 0

the steady state solution for homogeneous trafc ow's is 
following

ρ (t) = ρ    (7)j 0

v (t) = V(ρ )                                  (8)j 0

Let y (t) be a small perturbation to the steady-state density on j

site-j. Then
ρ (t) = ρ  + y (t)                             (9)j 0 j

V(ρ (t)) = V(ρ ) + V′(ρ )y (t), (10)j 0 0 j

Substituting ρ (t) = ρ  + y (t) into Eq.6, thenj 0 j

2After substituting z = z (ik) + z (ik) ... into Eq. (12), got that On 1 2
2comparing the coefcients of ik and (ik) , obtained that

When z  < 0,then it become unstable for uniform steady-state 2

for long-wavelength waves. Thus, the neutral stability 
condition is given by

    (15)

Eq15 Illustrates the importance of the lane coefcient (ʏ) and 
the jerk param- eter in playing a pivotal role in stabilizing 
trafc ow.

In g 1, the amplitude of the neutral stability curve for the 
value λ=0, k=0.1 and λ =0.2 signicantly higher to the 
proposed model for ʏ=0.2, k=0.1 and λ=0.2. This clearly 

illustrates that the stability zone of the suggested model much 
out- performs that of the Redhu model, demonstrating the 
proposed model's superior performance.

Figure 1: Phase diagram in density-sensitivity with 
comparison of Redhu model

(a)                                                             (b)
Figure 2: Phase diagram in density-sensitivity for xed value 
of k and different values of ã with
(a) λ = 0.2 (b) λ = 0.4

4. Nonlinear
A reductive perturbation strategy is used for a nonlinear 
stability study of the proposed model at the critical point (ρ , c

a ).At this scale, the utilization of long- wavelength expansion c

is employed to elucidate the gradual shifting behavior near 
the critical point and establish slow scales for spatial and 
temporal variables.

The slow-variables X and T are listed below. For a small 
positive parameter Ɛ, the slow variables X and T are dened 
as

3X = å(j + bt), T = Ɛ t                                            (16) 

where b is constant to be determined. Let ρ  satisfy the j

following equation:
ρ (t) = ρ  + ƐR(X, T)                                            (17)j c

By expanding Eq. (6) upto the fth order of Ɛ with the use of 
Eqs. (16) and (17), following nonlinear PDE(partial differential 
equation) is obtained: To solve the above equation using 

2In the neighborhood of critical point T , dene T = T (1 + � ) c c
2and choosing b = −ρ V′(ρ ).c c

Eliminating second and third order terms of å into Eq. (6), 
obtained that

Figure 3: Density proles at time t=10300 and λ = 0.2 when a 
= 2.4 and ʏ vary
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(a)           (b) 

©
Figure 4: Spatiotemporal evolutions of density at  time 
t=10300 when  λ =0.2 and a=2.4, when (a)ʏ = 0.0(b)ʏ = 0.1 
and (c)ʏ= 0.2

Figure 5: Density proles at time t=10300 when a=2.6, λ = 0, 4 
and ʏ-vary

where g , g , g , g  and g  as follows1 2 3 4 5

In order to derive the standard mKdV equation, following 
transformations have been in used in Eq. 

(a)     (b)

©
Figure 6: Spatiotemporal evolutions of density at time 
t=10300 when a = 2.6 when (a)ʏ= 0(b) ʏ= 0.1 and (c) ʏ = 0.2

Figure2(a) and 2(b) represent the phase diagram of density 
and sensitivity.The dotted curves in gure2(a) and 2(b)

Corresponding to nonlinear analysis, these are referred to as 
coexisting curves−and derived the mKdV equation. The 
kink–antikink solution symbolizes the coexisting- phase, 
encompassing both the freely-moving and congested phases, 
and can be characterized by ρ  = ρ  + A and ρ  = ρ  j c j c

Arespectively in the phase space (ρ, a). For a particular case, 
when ʏ= 0 the results become similar to those found by the 
Redhu proposed model [48].Figure2(a) and 2(b)

The complete region diveded in three phages due to the 
coexisting and neutral stability curves the region above the 
coexisting-curve is stable, the region un- der the neutral-
stability curve is unstable, and the region between the 
coexisting and neutral-stability curves is meta-stable. 
According to the gure2(a) and 2(b), stable-region increases 
with increasing ã , for ë =0.2 and 0.4. Without loss of gen- 
erality and the sake of deniteness incorporate the two-lane 
lattice hydrodynamic trafc ow model effect with trafc jerk 
in studying the impact on congestion due to non-motor 
vehicles.

5. Numerical Simulation
In this phage theoretical results is carried out for the new 
model with periodic- boundary conditions. The initial 
conditions are given as follows:
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Where σ represents the initial disturbance, and L is the total 
number of sites, set to 100, with other parameters congured 

1as follows: σ = 0.1, T =  . For computational purposes, the 
maximal velocity and critical density are dened as 2 and 
0.23, respectively.

Figure 3 illustrates the simulation results of density-evolution 
4after 10  time steps for varying values of ʏ when k = 0.1 and λ = 

0.2. Notably, in Figure 4(c), the initial perturbation diminishes 
for ʏ = 0.2 within the stable region, resulting in a uniform 
trafc ow. As ã decreases to 0.1, the uniform ow transitions 
into a congested ow with kink–antikink-soliton density-waves 
in the ”unstable” region, propagating backward over time, as 
depicted in Figure 4(b). Furthermore, with a decrease to ʏ = 
0.0, the number and height of stop-and-go waves increase, 
leading to congestion, as evident in Figure 4(a). The height of 
density-waves decreases with an increase in the value of ã for 
k = 0.1 and λ = 0.2, expanding the stable region. Hence, the 
presence of trafc jerk in the two-lane trafc model contributes 
to road congestion.

Similarly, in Figure 6©, the simulation results for density-
4evolution after 10  time steps with different ʏ values are shown 

for k = 0.1 and λ = 0.4. As ʏ decreases to 0.1, the uniform ow 
transforms into a congested ow with kink–antikink- soliton 
density-waves in the unstable-region, as illustrated in Figure 
6(b). Further reduction in ʏ to 0.0 intensies the number and 
height of stop-and-go waves, lead- ing to congestion, as 
shown in Figure 6(c). Figures 5 and 3 demonstrate that the 
height of density-waves goes to be decreases with an increase 
of ʏ for k = 0.1, λ = 0.4, and λ = 0.2, resulting in a reduction of 
the unstable region. Therefore, the presence of trafc jerk in 
the two-lane trafc model contributes to road congestion.

Similar patterns emerge when the proposed model increases 
the coefcient of ux, k = 0.2 and 0.3, respectively. In the 
stable-region, trafc-ow becomes uniform, and the initial 
perturbation diminishes, while in the unstable-region, per- 
turbation transforms into kink–antikink structures.

Comparing results for lower and higher for the values ʏ, it is 
conclude that the impact of two-lane trafc jerk aids in 
mitigating trafc congestion induced by the motion of non-
motor vehicles. This study highlights the crucial role of two- 
lane trafc jerk in trafc ow theory, particularly in the ux 
difference LH model, suggesting its consideration in trafc 
ow modeling studies.

6. CONCLUSION
The present model is built upon a two-lane lattice 
hydrodynamic system. Through the analysis of this model, for 
increasing the lane coefcient in a two-lane system, while 
maintaining a constant anticipation of trafc ux and jerk 
coefcient, leads to an expansion of the stable-region. The 
ndings indicate that the inclusion of a two-lane parameter 
contributes to alleviating trafc-congestion for various jerk 
scenarios. The simulation-results go with theoretical 
expectations.

Consequently, it is reasonable to assert that both trafc jerk 
and two-lane pa- rameters play pivotal roles in stabilizing 
trafc ow.so this should be considera- tion when developing 
trafc ow models and it promise for giving the valuable- 
insights that can be applied to address analogous 
challenges, especially in the enhancement of multi-lane 
trafc systems.

Data Availability Statement
There are no related data with this manuscript, or the data will 
not be submit- ted.
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